@article{VTAMU_2023_28_143_a4,
author = {V. P. Maksimov},
title = {To probabilistic description of an ensemble of trajectories to a continuous-discrete control system with incomplete information},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {256--267},
year = {2023},
volume = {28},
number = {143},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a4/}
}
TY - JOUR AU - V. P. Maksimov TI - To probabilistic description of an ensemble of trajectories to a continuous-discrete control system with incomplete information JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 256 EP - 267 VL - 28 IS - 143 UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a4/ LA - ru ID - VTAMU_2023_28_143_a4 ER -
%0 Journal Article %A V. P. Maksimov %T To probabilistic description of an ensemble of trajectories to a continuous-discrete control system with incomplete information %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 256-267 %V 28 %N 143 %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a4/ %G ru %F VTAMU_2023_28_143_a4
V. P. Maksimov. To probabilistic description of an ensemble of trajectories to a continuous-discrete control system with incomplete information. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 256-267. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a4/
[1] N. V. Azbelev, L. F. Rakhmatullina, “Theory of linear abstract functional differential equations and applications”, Memoirs on Differential Equations and Mathematical Physics, 8 (1996), 1–102 | MR
[2] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Elements of the Contemporary Theory of Functional Differential Equations. Methods and Applications, Institute of Computer-Assisted Studies Publ., Moscow, 2002 (In Russian) | MR
[3] V. P. Maksimov, “On a class of linear continuous-discrete systems with discrete memory”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 385–395 (In English) | MR | Zbl
[4] V. P. Maksimov, “On internal estimates of reachable sets for continuous-discrete systems with discrete memory”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 3, 2021, 141–151 (In Russian)
[5] J. Calatayud, J.-C. Cortes, M. Jornet, A. Navarro–Quiles, “Solving random ordinary and partial differential equations through the probability density function: theory and computing with applications”, Modern Mathematics and Mechanics. Fundamentals, Problems and Challenges, Understanding Complex Systems, eds. V. Sadovnichiy, Z. Zgurovsky, Springer, Cham, 2019, 261–282 | DOI | MR | Zbl
[6] V. P. Maksimov, “Attainability values of on-target functionals in economic dynamics problems”, Applied Mathematics and Control Sciences, 2019, no. 4, 124–135 (In Russian)
[7] E. I. Bravyi, V. P. Maksimov, P. M. Simonov, “Some economic dynamics problems for hybrid models with aftereffect”, Mathematics, 8:10 (2020), 1832 | DOI | MR
[8] V. P. Maksimov, “Nepreryvno-diskretnye dinamicheskie modeli”, Ufimskii matematicheskii zhurnal, 13:3 (2021), 97–106 | Zbl
[9] V. P. Maksimov, “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:1 (2019), 40–51 (In English) | MR | Zbl
[10] V. P. Maksimov, “Constructive study of controllability for a class of continuous-discrete systems with an uncertainty”, Functional Differential Equations, 29:3-4 (2022), 183–195 | DOI | MR | Zbl
[11] V. Ya. Derr, Probability Theory and Mathematical Statistics, Lan' Publ., Moscow, 2021 (In Russian)