Mathematical modeling in the problem of developing an effective method for controlling fusarium of wheat ear
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 236-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we constructed a mathematical model based on a continuous dynamic system, which is formalizing the interaction of fusarium fungi, wheat plants and soil microorganisms (mycophages and saprophages). The paper presents a statistical analysis of the available experimental data obtained under laboratory conditions, on the basis of which we solved the problem of restoring biologically interpreted parameters of the constructed model of the considered ecological system. The paper also considers the problem of impulse control within the constructed mathematical framework, which corresponds to a correction on the food webs in the system in order to stimulate the growth of the populations of natural antagonists of the fusarium fungus causing wheat pathology by applying special mixtures of organic fertilizers to the soil. We obtained conditions that guarantee controllability within the framework of the constructed mathematical model, as well as providing continuous dependence of solutions of the modeling equations on control.
Keywords: mathematical models in ecology, parameter identification, impulse control problems.
@article{VTAMU_2023_28_143_a2,
     author = {E. O. Burlakov and I. N. Malkov},
     title = {Mathematical modeling in the problem of developing an effective method for controlling fusarium of wheat ear},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {236--244},
     year = {2023},
     volume = {28},
     number = {143},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a2/}
}
TY  - JOUR
AU  - E. O. Burlakov
AU  - I. N. Malkov
TI  - Mathematical modeling in the problem of developing an effective method for controlling fusarium of wheat ear
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 236
EP  - 244
VL  - 28
IS  - 143
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a2/
LA  - ru
ID  - VTAMU_2023_28_143_a2
ER  - 
%0 Journal Article
%A E. O. Burlakov
%A I. N. Malkov
%T Mathematical modeling in the problem of developing an effective method for controlling fusarium of wheat ear
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 236-244
%V 28
%N 143
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a2/
%G ru
%F VTAMU_2023_28_143_a2
E. O. Burlakov; I. N. Malkov. Mathematical modeling in the problem of developing an effective method for controlling fusarium of wheat ear. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 236-244. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a2/

[3] G. S. Abawi, J. W. Lorbeer, “Several aspects of the ecology and pathology of Fusarium oxysporum f. sp. cepae”, Phytopathology, 62 (1972), 870–876 | DOI

[4] J. J. Marois, D. J. Mitchell, “Effects of fungal communities on the pathogenic and saprophytic activities of Fusarium oxysporum f. sp. radicis-lycopersici”, Phytopathology, 71 (1981), 1251–1256 | DOI

[5] S. N. Smith, “An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms”, Plant Pathology Bulletin, 16 (2007), 97–120

[6] G. Innocenti, M. A. Sabatini, “Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review”, Bulletin of Insectology, 71:1 (2018), 71–76

[7] F. Meyer-Wolfarth, S. Schrader, E. Oldenburg, J. Weinert, F. Brunotte, “Collembolans and soil nematodes as biological regulators of the plant pathogen Fusarium culmorum”, Journal of Plant Diseases and Protection, 124 (2007), 493–498 | DOI

[8] H. W. Lilliefors, “On the Kolmogorov–Smirnov test for normality with mean and variance unknown”, Journal of the American Statistical Association, 62:318 (1967), 399–402 | DOI

[9] M. S. Bartlett, “Properties of sufficiency and statistical tests”, Proceedings of the Royal Statistical Society, 160:901 (1937), 268–282 | Zbl

[10] N. N. Amosova, B. A. Kuklin, S. B. Makarova, Yu. D. Maksimov, N. M. Mitrofanova, V. I. Polisthshyuk, G. L. Shevlyakov, Veroyatnostnye Razdely Matematiki, Ivan Fedorov Publ., SPb., 2001 (In Russian)

[11] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions”, SIAM Journal on Optimization, 9:1 (1998), 112–147 | DOI | MR | Zbl

[12] E. O. Burlakov, E. S. Zhukovskii, “On well-posedness of generalized neural field equations with impulsive control”, Russian Mathematics (Iz VUZ), 60 (2016), 66-69 | DOI | MR | Zbl