Mots-clés : oscillation of solution
@article{VTAMU_2023_28_141_a5,
author = {A. Kh. Stash},
title = {On the continuum spectra of the exponents of linear homogeneous differential systems},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {60--67},
year = {2023},
volume = {28},
number = {141},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a5/}
}
TY - JOUR AU - A. Kh. Stash TI - On the continuum spectra of the exponents of linear homogeneous differential systems JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 60 EP - 67 VL - 28 IS - 141 UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a5/ LA - ru ID - VTAMU_2023_28_141_a5 ER -
A. Kh. Stash. On the continuum spectra of the exponents of linear homogeneous differential systems. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 141, pp. 60-67. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a5/
[1] I. N. Sergeev, “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Trudy seminara imeni I. G. Petrovskogo, 25, Izd-vo Mosk. un-ta, M., 2006, 249–294
[2] I. N. Sergeev, “Zamechatelnoe sovpadenie kharakteristik koleblemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matematicheskii sbornik, 204:1 (2013), 119–138 | DOI | MR
[3] I. N. Sergeev, “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izvestiya RAN. Seriya matematicheskaya, 76:1 (2012), 149–172 | DOI | MR
[4] I. N. Sergeev, “The complete set of relations between the oscillation, rotation and wandering indicators of solutions of differential systems”, Proceedings of the Institute of Mathematics and Computer Science of UdSU, 2015, no. 2(46), 171–183 (In Russian)
[5] I. N. Sergeev, “Pokazateli koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matematicheskie zametki, 99:5 (2016), 732–751 | DOI | MR
[6] I. N. Sergeev, “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Trudy Seminara im. I. G. Petrovskogo, 31 (2016), 177–219, Izd-vo Mosk. un-ta, M. ; I. N. Sergeev, “Lyapunov characteristics of oscillation, rotation, and wandering of solutions of differential systems”, Journal of Mathematical Sciences, 234:4 (2018), 497–522 | DOI | MR
[7] I. N. Sergeev, “Koleblemost, vraschaemost i bluzhdaemost reshenii lineinykh differentsialnykh sistem”, Trudy Mezhdunarodnogo simpoziuma «Differentsialnye uravneniya—2016», Perm, 17–18 maya 2016, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 132, VINITI RAN, M., 2017, 117–121 ; I. N. Sergeev, “Oscillation, rotation, and wandering of solutions to linear differential systems”, Journal of Mathematical Sciences, 230:5 (2018), 770–774 | DOI | MR
[8] I. N. Sergeev, “O pokazatelyakh koleblemosti, vraschaemosti i bluzhdaemosti differentsialnykh sistem, zadayuschikh povoroty ploskosti”, Vestnik MGU imeni M. V. Lomonosova. Seriya 1: Matematika. Mekhanika, 2019, no. 1, 21–26
[9] E. A. Barabanov, A. S. Voidelevich, “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. I”, Differentsialnye uravneniya, 52:10 (2016), 1302–1320 | DOI
[10] E. A. Barabanov, A. S. Voidelevich, “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. II”, Differentsialnye uravneniya, 52:12 (2016), 1595–1609 | DOI
[11] V. V. Bykov, “O berovskoi klassifikatsii chastot Sergeeva nulei i kornei reshenii lineinykh differentsialnykh uravnenii”, Differentsialnye uravneniya, 52:4 (2016), 419–425 | DOI | MR
[12] A. S. Voidelevich, “On spectra of upper Sergeev frequencies of linear differential equation”, Journal of the Belarusian State University. Mathematics. Computer science, 2019, no. 1, 28–32 (In Russian) | MR
[13] A. Kh. Stash, “On finite spectra of full and vector frequencies of linear two-dimensional differential periodic system”, Bulletin of the Adyghe State University. Series. Natural-mathematical and technical sciences, 2014, no. 1(133), 30–36 (In Russian)
[14] A. Kh. Stash, “About calculating ranges of full and vector frequencies of the linear two-dimensional differential system”, Bulletin of the Adyghe State University. Series. Natural-mathematical and technical sciences, 2014, no. 2(137), 23–32 (In Russian)
[15] D. S. Burlakov, S. V. Tsoi, “Sovpadenie polnoi i vektornoi chastot reshenii lineinoi avtonomnoi sistemy”, Trudy seminara im. I. G. Petrovskogo, no. 30, 2014, 75–93 ; D. S. Burlakov, S. V. Tsoii, “Coincidence of complete and vector frequencies of solutions of a linear autonomous system”, Journal of Mathematical Sciences, 210, no. 2 (2015), 155–167 | DOI | MR
[16] A. Kh. Stash, “Properties of exponents of oscillation of linear autonomous differential system solutions”, Bulletin of the Udmurt University. Mathematics. Mechanics. Computer Science, 29:4 (2019), 558–568 (In Russian) | MR
[17] A. Kh. Stash, “Suschestvovanie dvumernoi lineinoi sistemy s kontinualnymi spektrami polnykh i vektornykh chastot”, Differentsialnye uravneniya, 51:1 (2015), 143–144 | DOI | MR
[18] A. Yu. Goritskii, T. N. Fisenko, “Kharakteristicheskie chastoty nulei summy dvukh garmonicheskikh kolebanii”, Differentsialnye uravneniya, 48:4 (2012), 479–486 | MR
[19] M. V. Smolentsev, “Primer periodicheskogo differentsialnogo uravneniya tretego poryadka, spektr chastot kotorogo soderzhit otrezok”, Differentsialnye uravneniya, 50:10 (2014), 1413–1417 | DOI | MR