Mots-clés : multi-time scales.
@article{VTAMU_2023_28_141_a4,
author = {A. V. Ponosov},
title = {Existence and uniqueness of solutions to stochastic fractional differential equations in multiple time scales},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {51--59},
year = {2023},
volume = {28},
number = {141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a4/}
}
TY - JOUR AU - A. V. Ponosov TI - Existence and uniqueness of solutions to stochastic fractional differential equations in multiple time scales JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 51 EP - 59 VL - 28 IS - 141 UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a4/ LA - en ID - VTAMU_2023_28_141_a4 ER -
%0 Journal Article %A A. V. Ponosov %T Existence and uniqueness of solutions to stochastic fractional differential equations in multiple time scales %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 51-59 %V 28 %N 141 %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a4/ %G en %F VTAMU_2023_28_141_a4
A. V. Ponosov. Existence and uniqueness of solutions to stochastic fractional differential equations in multiple time scales. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 141, pp. 51-59. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a4/
[1] B. N. Sadovskii, “A fixed-point principle”, Funct. Anal. Appl., 1:2 (1967), 151–153 | MR
[2] J. Jacod, J. Memin, “Existence of weak solutions for stochastic differential equations with driving semimartingales”, Stochastics, 4 (1981), 317–337 | DOI | MR
[3] A. Ponosov, “Fixed point method in the theory of stochastic differential equations”, Soviet Math. Doklady, 37:2 (1988), 426–429 | MR
[4] J. Appell, P. P. Zabreiko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2008, 311 pp. | MR
[5] A. Ponosov, “On the Nemytskii conjecture”, Soviet Math. Doklady, 34:1 (1987), 231–233 | MR
[6] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing ltd., Chichester, 1997, 366 pp. | MR
[7] B. Øksendal, Stochastic Differential Equations, Universitext, Springer-Verlag Berlin Heidelberg, Berlin, 2013, 379 pp. | MR
[8] A. Ponosov, “Local operators and stochastic differential equations”, Functional Differential Equations, 4:1–2 (1997), 73–89 | MR
[9] G. Di Nunno, B. Øksendal, F. Proske, Malliavin Calculus for Lévy Processes with Applications to Finance, Universitext, Springer–Verlag Berlin Heidelberg, Berlin, 2009, 418 pp. | MR
[10] D. H. Wagner, “Survey of measurable selection theorems”, SIAM J. Control and Optimization, 15:5 (1977), 859–903 | DOI | MR
[11] I. V. Shragin, “Abstract Nemytskii operators are locally defined operators”, Soviet Math. Doklady, 17:2 (1976), 354–357 | MR
[12] A. Ponosov, E. Stepanov, “Atomic operators, random dynamical systems and invariant measures”, St. Petersburg Math. J., 26 (2015), 607–642 | DOI | MR
[13] S. G. Krantz, Function Theory of Several Complex Variables: Second Edition, v. 340, AMS Chelsea Publishing, Providence, 1992 | MR
[14] Hu Sze-Tsen, Theory of Retracts, Wayne State University Press, Detroit, 1965, 234 pp. | MR