Mots-clés : optimal exploitation.
@article{VTAMU_2023_28_141_a2,
author = {M. S. Woldeab},
title = {Properties of the average time benefit for probabilistic models of exploited populations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {26--38},
year = {2023},
volume = {28},
number = {141},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a2/}
}
TY - JOUR AU - M. S. Woldeab TI - Properties of the average time benefit for probabilistic models of exploited populations JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 26 EP - 38 VL - 28 IS - 141 UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a2/ LA - ru ID - VTAMU_2023_28_141_a2 ER -
M. S. Woldeab. Properties of the average time benefit for probabilistic models of exploited populations. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 141, pp. 26-38. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a2/
[1] W. J. Reed, “The steady state of a stochastic harvesting model”, Mathematical Biosciences, 41:3–4 (1978), 273–307 | DOI | MR
[2] A. Glait, “Optimal harvesting in continuous time with stochastic growth”, Mathematical Biosciences, 41:1–2 (1978), 111–123 | DOI | MR
[3] R. Lande, S. Engen, B. E. Saether, Stochastic Population Dynamics in Ecology and Conservation, Oxford University Press, 2003
[4] S. J. Schreiber, M. Benaim, K. A. S. Atchadé, “Persistence in fluctuating environments”, Journal of Mathematical Biology, 62:5 (2011), 655–683 | DOI | MR
[5] O. Tahvonen, M. F. Quaas, R. Voss, “Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries”, Journal of Environmental Economics and Management, 92 (2018), 659–676 | DOI
[6] L. I. Rodina, “Optimization of average time profit for a probability model of the population subject to a craft”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 28:1 (2018), 48–58 (In Russian) | MR
[7] L. I. Rodina, “Properties of average time profit in stochastic models of harvesting a renewable resource”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 28:2 (2018), 213–221 (In Russian) | MR
[8] B. Yang, Y. Cai, K. Wang, W. Wang, “Optimal harvesting policy of logistic population model in a randomly fluctuating environment”, Physica A: Statistical Mechanics and Its Applications, 526 (2019), 120817 | DOI | MR
[9] A. Hening, K. Q. Tran, T. T. Phan, G. Yin, “Harvesting of interacting stochastic populations”, Journal of Mathematical Biology, 79:2 (2019), 533–570 | DOI | MR
[10] L. I. Rodina, “About one stochastic harvesting model of a renewed resourse”, Russian Universities Reports. Mathematics, 23:124 (2018), 685–695 (In Russian)
[11] Yu. V. Masterkov, L. I. Rodina, “Estimation of averadge time profit for stochastic structured population”, Izv. IMI UdGU, 56 (2020), 41–49 (In Russian) | MR
[12] A. A. Rodin, L. I. Rodina, A. V. Chernikova, “On how to exploit a population given by a difference equation with random parameters”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 32:2 (2022), 211–227 (In Russian) | MR
[13] A. V. Chernikova, “About existence of the limit of the average time profit in stochastic models of harvesting a renewable resource”, Russian Universities Reports. Mathematics, 27:140 (2022), 386–404 (In Russian)
[14] T. Upmann, S. Behringer, “Harvesting a remote renewable resource”, Theoretical Ecology, 13:4 (2020), 459–480 | DOI
[15] M. Liu, “Optimal Harvesting of Stochastic Population Models with Periodic Coefficients”, Journal of Nonlinear Science, 32:2 (2022), 1–14 | DOI | MR
[16] G. Yu. Riznichenko, Lectures on Mathematical Models in Biology. Part 1, Scientific-Publishing Centre “Regular and Chaotic Dynamics”, Izhevsk, 2002, 232 pp. (In Russian)
[17] A. N. Shiryaev, Probability-1, Nauka Publ., Moscow, 1975, 580 pp. (In Russian)
[18] O. A. Kuzenkov, E. A. Ryabova, Mathematical Modelling of Selection Processes, Nizhny Novgorod University Press, Nizhnii Novgorod, 2007, 324 pp. (In Russian)