On the interrelation of motions of dynamical systems in
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 141, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the interrelation between recurrent and outgoing motions of dynamical systems. An outgoing motion is a motion whose $\alpha$- and $\omega$-limit sets are either empty or non-compact. It is shown that in a separable locally compact metric space $\Sigma$ with invariant Carathéodory measure, almost all points lie on trajectories of motions that are either recurrent or outgoing, i. e. in the space $\Sigma,$ the set of points $\Gamma$ lying on the trajectories of non-outgoing and non-recurrent motions has measure zero. Moreover, any motion located in $\Gamma$ is both positively and negatively asymptotic with respect to the corresponding compact minimal sets. The proof of this assertion essentially relies on the classical Poincaré–Carathéodory and Hopf recurrence theorems. From this proof and Hopf's theorem, it follows that in a separable locally compact metric space, there can exist non-recurrent Poisson-stable motions, but all these motions must necessarily be outgoing. At the same time, in the compact space $\Sigma$ any Poisson-stable motion is recurrent.
Keywords: dynamical systems, separable locally compact metric space with invariant measure
Mots-clés : interrelation of motions.
@article{VTAMU_2023_28_141_a0,
     author = {A. P. Afanas'ev and S. M. Dzyuba},
     title = {On the interrelation of motions of dynamical systems in},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {5--12},
     year = {2023},
     volume = {28},
     number = {141},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a0/}
}
TY  - JOUR
AU  - A. P. Afanas'ev
AU  - S. M. Dzyuba
TI  - On the interrelation of motions of dynamical systems in
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 5
EP  - 12
VL  - 28
IS  - 141
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a0/
LA  - ru
ID  - VTAMU_2023_28_141_a0
ER  - 
%0 Journal Article
%A A. P. Afanas'ev
%A S. M. Dzyuba
%T On the interrelation of motions of dynamical systems in
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 5-12
%V 28
%N 141
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a0/
%G ru
%F VTAMU_2023_28_141_a0
A. P. Afanas'ev; S. M. Dzyuba. On the interrelation of motions of dynamical systems in. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 141, pp. 5-12. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_141_a0/

[1] G. D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian)

[2] V. V. Nemytskii, V. V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian) | MR

[3] D. N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, HPC Publ., New York, 2009 | MR

[4] A. P. Afanas'ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Russian Universities Reports. Mathematics, 26:133 (2021), 5–14 (In Russian)

[5] A. P. Afanas'ev, S. M. Dzyuba, “On the interrelation of motions of dynamical systems”, Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian)

[6] L. Schwartz, Analisys, v. I, Mir Publ., Moscow, 1972 (In Russian)

[7] A. P. Afanas'ev, S. M. Dzyuba, “New properties of recurrent motions and limit sets of dynamical systems”, Russian Universities Reports. Mathematics, 27:137 (2022), 5–15 (In Russian)

[8] P. S. Alexandroff, Introduction to the general theory of sets and funcrions, OGIZ–Gostekhizdat Publ., Moscow, 1948 (In Russian)