Mots-clés : optimal exploitation.
@article{VTAMU_2022_27_140_a6,
author = {A. V. Chernikova},
title = {About existence of the limit to the average time profit in stochastic models of harvesting a renewable resource},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {386--404},
year = {2022},
volume = {27},
number = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a6/}
}
TY - JOUR AU - A. V. Chernikova TI - About existence of the limit to the average time profit in stochastic models of harvesting a renewable resource JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 386 EP - 404 VL - 27 IS - 140 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a6/ LA - ru ID - VTAMU_2022_27_140_a6 ER -
%0 Journal Article %A A. V. Chernikova %T About existence of the limit to the average time profit in stochastic models of harvesting a renewable resource %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 386-404 %V 27 %N 140 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a6/ %G ru %F VTAMU_2022_27_140_a6
A. V. Chernikova. About existence of the limit to the average time profit in stochastic models of harvesting a renewable resource. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 386-404. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a6/
[1] C. W. Clark, “Mathematical Bioeconomics”, Mathematical Problems in Biology, v. 2, Lecture Notes in Biomathematics, ed. S. Levin, Springer–Verlag, Berlin–Heidelberg–New York, 1974, 29–45 | DOI
[2] B. Dennis, “Allee effects: population growth, critical density, and the chance of extinction”, Natural Resource Modeling, 3:4 (1989), 481–538 | DOI
[3] A. M. Parma, “Optimal harvesting of fish populations with non-stationary stock-recruitment relationships”, Natural Resource Modeling, 4:1 (1990), 39–76 | DOI
[4] A. O. Belyakov, V. M. Veliov, “On optimal harvesting in age-structured populations”, Dynamic Perspectives on Managerial Decision Making, Dynamic Modeling and Econometrics in Economics and Finance, 22, eds. H. Dawid, K. F. Doerner, G. Feichtinger, P. M. Kort, A. Seidl, Springer Cham, Switzerland, 2016, 149–166 | DOI
[5] A. V. Egorova, L. I. Rodina, “On optimal harvesting of renewable resource from the structured population”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 29:4 (2019), 501–517 (In Russian) | DOI
[6] W. J. Reed, “The steady state of a stochastic harvesting model”, Mathematical Biosciences, 41:3-4 (1978), 273–307 | DOI
[7] R. Lande, S. Engen, B. E. Saether, Stochastic Population Dynamics in Ecology and Conservation, Oxford University Press, New York, 2003, 212 pp. | DOI
[8] S. J. Schreiber, M. Benaim, K. A. S. Atchadé, “Persistence in fluctuating environments”, Journal of Mathematical Biology, 62:5 (2011), 655–683 | DOI
[9] O. Tahvonen, M. F. Quaas, R. Voss, “Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries”, Journal of Environmental Economics and Management, 92 (2018), 659–676 | DOI
[10] B. Yang, Y. Cai, K. Wang, W. Wang, “Optimal harvesting policy of logistic population model in a randomly fluctuating environment”, Physica A: Statistical Mechanics and Its Applications, 526 (2019), Article ID 120817 | DOI
[11] A. Hening, K. Q. Tran, T. T. Phan, G. Yin, “Harvesting of interacting stochastic populations”, Journal of Mathematical Biology, 79:2 (2019), 533–570 | DOI
[12] L. I. Rodina, “About one stochastic harvesting model of a renewed resourse”, Russian Universities Reports. Mathematics, 23:124 (2018), 685–695 (In Russian) | DOI
[13] A. A. Rodin, L. I. Rodina, A. V. Chernikova, “On how to exploit a population given by a difference equation with random parameters”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 32:2 (2022), 211–227 (In Russian) | DOI
[14] T. Upmann, S. Behringer, “Harvesting a remote renewable resource”, Theoretical Ecology, 13:4 (2020), 459–480 | DOI
[15] M. Liu, “Optimal Harvesting of Stochastic Population Models with Periodic Coefficients”, Journal of Nonlinear Science, 32:2 (2022), 1–14 | DOI
[16] L. I. Rodina, “Optimization of average time profit for a probability model of the population subject to a craft”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 28:1 (2018), 48–58 (In Russian) | DOI
[17] L. I. Rodina, “Properties of average time profit in stochastic models of harvesting a renewable resource”, The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 28:2 (2018), 213–221 (In Russian) | DOI
[18] A. N. Shiryaev, Probability-1, Nauka Publ., Moscow, 1975 (In Russian)
[19] Yu. M. Svirezhev, D. O. Logofet, Stability of Biological Communities, Nauka Publ., Moscow, 1978 (In Russian)
[20] V. Feller, Introduction to Probability Theory and its Applications, v. 2, Mir Publ., Moscow, 1984 (In Russian)