Mots-clés : solution
@article{VTAMU_2022_27_140_a5,
author = {V. I. Uskov},
title = {Solution of a second-order algebro-differential equation in a banach space},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {375--385},
year = {2022},
volume = {27},
number = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a5/}
}
V. I. Uskov. Solution of a second-order algebro-differential equation in a banach space. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 375-385. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a5/
[1] N. D. Kopachevsky, S. G. Krein, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics, Nauka Publ., Moscow, 1989 (In Russian)
[2] R. C. Dorf, R. H. Bishop, Modern Control Systems, Pearson Education International, England, 2008
[3] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Mathematical Methods in the Applied Sciences, 24 (2001), 1043–1053 | DOI
[4] M. N. Botoroeva, O. S. Budnikova, L. S. Solovarova, “On the choice of boundary conditions for second-order differential-algebraic equations”, BSU Bulletin. Mathematics, Informatics, 2019, no. 3, 32–41 | DOI
[5] S. S. Orlov, “Continuous solutions of a second-order degenerate integro-differential equation in Banach spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 2:1 (2009), 328–332 | DOI
[6] V. I. Uskov, “Solving a second-order algebro-differential equation with respect to the derivative”, Russian Universities Reports. Mathematics, 26:136 (2021), 414–420 | DOI
[7] S. Nikolsky, “Linear equations in normed linear spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 7:3 (1943), 147–166 | DOI
[8] S. P. Zubova, V. I. Uskov, “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s malym parametrom v banakhovom prostranstve. Regulyarnyi sluchai”, Matematicheskie zametki, 103:3 (2018), 393–404