Solution of a second-order algebro-differential equation in a banach space
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 375-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to the study of the algebro-differential equation \begin{equation*} A\frac{d^2u}{dt^2}=B\frac{du}{dt}+Cu(t)+f(t), \end{equation*} where $A,$ $B,$ $C$ are closed linear operators acting from a Banach space $E_1$ into a Banach space $E_2$ whose domains are everywhere dense in $E_1$. $A$ is a Fredholm operator with zero index (hereinafter, Fredholm), the function $f(t)$ takes values in $E_2$; $t\in[0;T]$. The kernel of the operator $A$ is assumed to be one-dimensional. For solvability of the equation with respect to the derivative, the method of cascade splitting is applied, consisting in the stepwise splitting of the equation and conditions to the corresponding equations and conditions in subspaces of lower dimensions. One-step and two-step splitting are considered, theorems on the solvability of the equation are obtained. The theorems are used to obtain the existence conditions for a solution to the Cauchy problem. In order to illustrate the results obtained, a homogeneous Cauchy problem with given operator coefficients in the space $\mathbb{R}^2$ is solved. For this, it is considered the second-order differential equation in the finite-dimensional space $\mathbb{C}^m$ \begin{equation*} \frac{d^2u}{dt^2}=H\frac{du}{dt}+Ku(t). \end{equation*} The characteristic equation $M(\lambda):=\det(\lambda^2 I-\lambda H-K)=0$ is studied. For the polynomial $M(\lambda),$ in the cases $m=2,$ $m=3,$ the Maclaurin formulas are obtained. General solution of the equation is defined in the case of the unit algebraic multiplicity of the characteristic equation.
Keywords: algebro-differential, second-order equation, Fredholm operator, Banach space, Cauchy problem.
Mots-clés : solution
@article{VTAMU_2022_27_140_a5,
     author = {V. I. Uskov},
     title = {Solution of a second-order algebro-differential equation in a banach space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {375--385},
     year = {2022},
     volume = {27},
     number = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a5/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Solution of a second-order algebro-differential equation in a banach space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 375
EP  - 385
VL  - 27
IS  - 140
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a5/
LA  - ru
ID  - VTAMU_2022_27_140_a5
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Solution of a second-order algebro-differential equation in a banach space
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 375-385
%V 27
%N 140
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a5/
%G ru
%F VTAMU_2022_27_140_a5
V. I. Uskov. Solution of a second-order algebro-differential equation in a banach space. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 375-385. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a5/

[1] N. D. Kopachevsky, S. G. Krein, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics, Nauka Publ., Moscow, 1989 (In Russian)

[2] R. C. Dorf, R. H. Bishop, Modern Control Systems, Pearson Education International, England, 2008

[3] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Mathematical Methods in the Applied Sciences, 24 (2001), 1043–1053 | DOI

[4] M. N. Botoroeva, O. S. Budnikova, L. S. Solovarova, “On the choice of boundary conditions for second-order differential-algebraic equations”, BSU Bulletin. Mathematics, Informatics, 2019, no. 3, 32–41 | DOI

[5] S. S. Orlov, “Continuous solutions of a second-order degenerate integro-differential equation in Banach spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 2:1 (2009), 328–332 | DOI

[6] V. I. Uskov, “Solving a second-order algebro-differential equation with respect to the derivative”, Russian Universities Reports. Mathematics, 26:136 (2021), 414–420 | DOI

[7] S. Nikolsky, “Linear equations in normed linear spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 7:3 (1943), 147–166 | DOI

[8] S. P. Zubova, V. I. Uskov, “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s malym parametrom v banakhovom prostranstve. Regulyarnyi sluchai”, Matematicheskie zametki, 103:3 (2018), 393–404