On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 351-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a regular parametric nonlinear (nonconvex) problem for constrained extremum with an operator equality constraint and a finite number of functional inequality constraints. The constraints of the problem contain additive parameters, which makes it possible to use the apparatus of the “nonlinear” perturbation method for its study. The set of admissible elements of the problem is a complete metric space, and the problem itself may not have a solution. The regularity of the problem is understood in the sense that it has a generalized Kuhn–Tucker vector. Within the framework of the ideology of the Lagrange multiplier method, a regularized nondifferential Kuhn–Tucker theorem is formulated and proved, the main purpose of which is the stable generation of generalized minimizing sequences in the problem under consideration. These minimizing sequences are constructed from subminimals (minimals) of the modified Lagrange function taken at the values of the dual variable generated by the corresponding regularization procedure for the dual problem. The construction of the modified Lagrange function is a direct consequence of the subdifferential properties of a lower semicontinuous and, generally speaking, nonconvex value function as a function of the problem parameters. The regularized Kuhn–Tucker theorem “overcomes” the instability properties of its classical counterpart, is a regularizing algorithm, and serves as a theoretical basis for creating algorithms of practical solving problems for constrained extremum.
Keywords: constrained extremum, nonlinear parametric problem, operator constraint, nondifferential Kuhn–Tucker theorem, value function, proximal subgradient, ill-posed problem, dual regularization, generalized minimizing sequence, modified Lagrange function.
Mots-clés : perturbation method
@article{VTAMU_2022_27_140_a4,
     author = {M. I. Sumin},
     title = {On regularization of the nondifferential {Kuhn{\textendash}Tucker} theorem in a nonlinear problem for constrained extremum},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {351--374},
     year = {2022},
     volume = {27},
     number = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 351
EP  - 374
VL  - 27
IS  - 140
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/
LA  - ru
ID  - VTAMU_2022_27_140_a4
ER  - 
%0 Journal Article
%A M. I. Sumin
%T On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 351-374
%V 27
%N 140
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/
%G ru
%F VTAMU_2022_27_140_a4
M. I. Sumin. On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 351-374. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/

[1] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979; V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987

[2] F. P. Vasil’ev, Optimization methods: in 2 books, MCCME, Moscow, 2011 (In Russian)

[3] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615

[4] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25, no. 1 (2019), 279–296 (In Russian) | DOI

[5] M. I. Sumin, “On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles”, Russian Universities Reports. Mathematics, 27:137 (2022), 58–79 (In Russian)

[6] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974; A. N. Tikhonov, V. Ya. Arsenin, Solutions of Ill-Posed Problems, Winston; Halsted Press, Washington; New York, 1977

[7] A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nelineinye nekorrektnye zadachi, Nauka, M., 1995; A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nonlinear Ill-Posed Problems, Taylor and Francis, London, 1998

[8] M. I. Sumin, “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[9] M. I. Sumin, “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816

[10] E. G. Golshtein, Duality Theory in Mathematical Programming and its Applications, Nauka Publ., Moscow, 1971 (In Russian)

[11] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972

[12] M. I. Sumin, “Nondifferential Kuhn–Tucker theorems in constrained extremum problems via subdifferentials of nonsmooth analysis”, Russian Universities Reports. Mathematics, 25:131 (2020), 307–330 (In Russian)

[13] A. V. Kanatov, M. I. Sumin, “Sekventsialnaya ustoichivaya teorema Kuna–Takkera v nelineinom programmirovanii”, Zhurn. vychisl. matem. i matem. fiz., 53:8 (2013), 1249–1271

[14] M. I. Sumin, “Ustoichivaya sekventsialnaya teorema Kuna–Takkera v iteratsionnoi forme ili regulyarizovannyi algoritm Udzavy v regulyarnoi zadache nelineinogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 55:6 (2015), 947–977

[15] P. D. Loewen, Optimal Control via Nonsmooth Analysis, v. 2, CRM Proceedings Lecture Notes, Amer. Math. Soc., Providence, RI, 1993

[16] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control theory, v. 178, Graduate texts in mathematics, Springer–Verlag, New York, 1998

[17] D. Bertsekas, Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, 1-e izd., Radio i svyaz, M., 1987; D. -P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York–London–Paris–San Diego–SanFrancisco–Sao Paulo–Sydney–Tokyo–Toronto, 1982

[18] E. G. Golshtein, N. V. Tret’yakov, Modified Lagrange Functions. Theory and Methods of Optimization, Nauka Publ., Moscow, 1989 (In Russian)

[19] M. I. Sumin, “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 252–269 (In Russian)

[20] M. I. Sumin, “Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 202–221 (In Russian)

[21] V. A. Trenogin, Functional Analysis, Nauka Publ., Moscow, 1980 (In Russian)

[22] I. Ekeland, “On the variational principle”, Journal of Mathematical Analysis and Applications, 47:2 (1974), 324–353

[23] Zh. -P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988; J. -P. Aubin, L’analyse non Lineaire et ses Motivations Economiques, Masson, Paris–New York, 1984