Mots-clés : perturbation method
@article{VTAMU_2022_27_140_a4,
author = {M. I. Sumin},
title = {On regularization of the nondifferential {Kuhn{\textendash}Tucker} theorem in a nonlinear problem for constrained extremum},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {351--374},
year = {2022},
volume = {27},
number = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/}
}
TY - JOUR AU - M. I. Sumin TI - On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 351 EP - 374 VL - 27 IS - 140 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/ LA - ru ID - VTAMU_2022_27_140_a4 ER -
%0 Journal Article %A M. I. Sumin %T On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 351-374 %V 27 %N 140 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/ %G ru %F VTAMU_2022_27_140_a4
M. I. Sumin. On regularization of the nondifferential Kuhn–Tucker theorem in a nonlinear problem for constrained extremum. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 351-374. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a4/
[1] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979; V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987
[2] F. P. Vasil’ev, Optimization methods: in 2 books, MCCME, Moscow, 2011 (In Russian)
[3] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615
[4] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25, no. 1 (2019), 279–296 (In Russian) | DOI
[5] M. I. Sumin, “On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles”, Russian Universities Reports. Mathematics, 27:137 (2022), 58–79 (In Russian)
[6] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974; A. N. Tikhonov, V. Ya. Arsenin, Solutions of Ill-Posed Problems, Winston; Halsted Press, Washington; New York, 1977
[7] A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nelineinye nekorrektnye zadachi, Nauka, M., 1995; A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nonlinear Ill-Posed Problems, Taylor and Francis, London, 1998
[8] M. I. Sumin, “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[9] M. I. Sumin, “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816
[10] E. G. Golshtein, Duality Theory in Mathematical Programming and its Applications, Nauka Publ., Moscow, 1971 (In Russian)
[11] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972
[12] M. I. Sumin, “Nondifferential Kuhn–Tucker theorems in constrained extremum problems via subdifferentials of nonsmooth analysis”, Russian Universities Reports. Mathematics, 25:131 (2020), 307–330 (In Russian)
[13] A. V. Kanatov, M. I. Sumin, “Sekventsialnaya ustoichivaya teorema Kuna–Takkera v nelineinom programmirovanii”, Zhurn. vychisl. matem. i matem. fiz., 53:8 (2013), 1249–1271
[14] M. I. Sumin, “Ustoichivaya sekventsialnaya teorema Kuna–Takkera v iteratsionnoi forme ili regulyarizovannyi algoritm Udzavy v regulyarnoi zadache nelineinogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 55:6 (2015), 947–977
[15] P. D. Loewen, Optimal Control via Nonsmooth Analysis, v. 2, CRM Proceedings Lecture Notes, Amer. Math. Soc., Providence, RI, 1993
[16] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control theory, v. 178, Graduate texts in mathematics, Springer–Verlag, New York, 1998
[17] D. Bertsekas, Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, 1-e izd., Radio i svyaz, M., 1987; D. -P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York–London–Paris–San Diego–SanFrancisco–Sao Paulo–Sydney–Tokyo–Toronto, 1982
[18] E. G. Golshtein, N. V. Tret’yakov, Modified Lagrange Functions. Theory and Methods of Optimization, Nauka Publ., Moscow, 1989 (In Russian)
[19] M. I. Sumin, “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 252–269 (In Russian)
[20] M. I. Sumin, “Perturbation method, subdifferentials of nonsmooth analysis, and regularization of the Lagrange multiplier rule in nonlinear optimal control”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 202–221 (In Russian)
[21] V. A. Trenogin, Functional Analysis, Nauka Publ., Moscow, 1980 (In Russian)
[22] I. Ekeland, “On the variational principle”, Journal of Mathematical Analysis and Applications, 47:2 (1974), 324–353
[23] Zh. -P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988; J. -P. Aubin, L’analyse non Lineaire et ses Motivations Economiques, Masson, Paris–New York, 1984