On the best approximation and the values of the widths of some classes of functions in the Bergmann weight space
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 339-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the extremal problem of finding exact constants in the Jackson–Stechkin type inequalities connecting the best approximations of analytic in the unit circle $U=\{z:|z|<1\}$ functions by algebraic complex polynomials and the averaged values of the higher-order continuity modules of the $r$-th derivatives of functions in the Bergman weight space $B_{2,\gamma}.$ The classes of analytic in the unit circle functions $W_{m}^{(r)}(\tau)$ and $W_{m}^{(r)}(\tau,\Phi)$ which satisfy some specific conditions are introduced. For the introduced classes of functions, the exact values of some known $n$-widths are calculated. In this paper, we use the methods of solving extremal problems in normalized spaces of functions analytic in a circle and a well-known method developed by V. M. Tikhomirov for estimating from below the $n$-widths of functional classes in various Banach spaces. The results obtained in the work generalize and extend the results of the works by S. B. Vakarchuk and A. N. Shchitova obtained for the classes of differentiable periodic functions to the case of analytic in the unit circle functions belonging to the Bergmann weight space.
Keywords: analytic function, best approximation, higher-order continuity modulus, Bergmann weight space.
Mots-clés : algebraic complex polynomial
@article{VTAMU_2022_27_140_a3,
     author = {M. R. Langarshoev},
     title = {On the best approximation and the values of the widths of some classes of functions in the {Bergmann} weight space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {339--350},
     year = {2022},
     volume = {27},
     number = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a3/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - On the best approximation and the values of the widths of some classes of functions in the Bergmann weight space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 339
EP  - 350
VL  - 27
IS  - 140
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a3/
LA  - ru
ID  - VTAMU_2022_27_140_a3
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T On the best approximation and the values of the widths of some classes of functions in the Bergmann weight space
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 339-350
%V 27
%N 140
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a3/
%G ru
%F VTAMU_2022_27_140_a3
M. R. Langarshoev. On the best approximation and the values of the widths of some classes of functions in the Bergmann weight space. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 339-350. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a3/

[1] K. I. Babenko, “Best approximations to a class of analytic functions”, Izv. Akad. Nauk SSSR Ser. Mat., 22:5 (1958), 631–640 (In Russian)

[2] V. M. Tikhomirov, “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3(93) (1960), 81–120 | MR | Zbl

[3] L. V. Taikov, “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 1:2 (1967), 155–162

[4] M. Z. Dveyrin, “Widths and $\varepsilon$-entropy of classes of functions that are analytic in the unit circle of functions”, Function Theory, Functional Analysis and their Applications, 23 (1975), 32–46 (In Russian)

[5] N. Ainulloev, L. V. Taikov, “Nailuchshee priblizhenie v smysle A. N. Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Matem. zametki, 40:3 (1986), 341–351

[6] Yu. A. Farkov, “Poperechniki klassov Khardi i Bergmana v share iz $C_{n}$”, UMN, 45:5 (1990), 197–198

[7] S. B. Vakarchuk, “Tochnye znacheniya poperechnikov klassov analiticheskikh v kruge funktsii i nailuchshie lineinye metody priblizheniya”, Matem. zametki, 72:5 (2002), 665–669

[8] S. B. Vakarchuk, “O nekotorykh ekstremalnykh zadachakh teorii priblizhenii v kompleksnoi ploskosti”, Ukr. matem. zhurn., 56:9 (2004), 1155–1171

[9] M. Sh. Shabozov, G. A. Yusupov, J. J Zargarov, “On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 4, 2021, 239–254 (In Russian)

[10] M. Sh. Shabozov, O. Sh. Shabozov, “O nailuchshem priblizhenii nekotorykh klassov analiticheskikh funktsii v vesovykh prostranstvakh Bergmana $\mathfrak{B}_{2,\gamma}$”, Doklady Akademii nauk, 412:4 (2007), 466–469

[11] S. B. Vakarchuk, M. Sh. Shabozov, “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Matem. sb., 201:8 (2010), 3–21

[12] M. Sh. Shabozov, M. R. Langarshoev, “O nailuchshikh lineinykh metodakh priblizheniya nekotorykh klassov analiticheskikh v edinichnom kruge funktsii”, Sib. matem. zhurn., 60:6 (2019), 1414–1423

[13] M. R. Langarshoev, “Jackson–Stechkin type inequalities and widths of classes of functions in the weighted Bergman space”, Chebyshevskii Sb., 22:2 (2021), 135–144 (In Russian)

[14] M. Sh. Shabozov, M. S. Saidusainov, “Priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam v $L_{2}$”, Izv. vuzov. Matem., 64:6 (2020), 65–72

[15] V. M. Tikhomirov, Some Questions of Approximation Theory, Moscow State University Publ., Moscow, 1976 (In Russian)

[16] V. V. Shalaev, “O poperechnikakh v $L_{2}$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. matem. zhurn., 43:1 (1991), 125–129

[17] S. B. Vakarchuk, A. N. Schitov, “Nailuchshie polinomialnye priblizheniya v $L_{2}$ i poperechniki nekotorykh klassov funktsii”, Ukr. matem. zhurn., 56:11 (2004), 1458–1466