@article{VTAMU_2022_27_140_a2,
author = {E. Yu. Grazhdantseva},
title = {On exact solution of a hyperbolic system of differential equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {328--338},
year = {2022},
volume = {27},
number = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/}
}
TY - JOUR AU - E. Yu. Grazhdantseva TI - On exact solution of a hyperbolic system of differential equations JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 328 EP - 338 VL - 27 IS - 140 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/ LA - ru ID - VTAMU_2022_27_140_a2 ER -
E. Yu. Grazhdantseva. On exact solution of a hyperbolic system of differential equations. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 328-338. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/
[1] B. L. Rozhdestvensky, N. N. Yanenko, Systems of Quasilinear Equations and their Applications in Gas Dynamics, Nauka Publ., Moscow, 1978 (In Russian)
[2] A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “On solutions of the traveling wave type for the nonlinear heat equation”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 196, VINITI, Moscow, 2021, 36–43 (In Russian) | DOI
[3] V. R. Tagirova, “A solution to the hydraulic fracture problem in the traveling wave form”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 4, 46–48 (In Russian)
[4] A. D. Polyanin, “Neklassicheskie (neinvariantnye) resheniya tipa beguschei volny i avtomodelnye resheniya”, Doklady akademii nauk, 398:1 (2004), 33–37
[5] S. V. Pikulin, “O resheniyakh tipa beguschei volny uravneniya Kolmogorova–Petrovskogo–Piskunova”, Zh. vychisl. matem. i matem. fiz., 58:2 (2018), 244–252 | DOI
[6] Kh. S. Kuchakshoev, “Bounded solutions of the traveling wave type and some particular solutions of the Keller–Siegel system”, Reports of the Academy of Sciences of the Republic of Tajikistan, 54:8 (2011), 610–617 (In Russian)
[7] E. A. Budylina, E. G. Murachev, I. A. Garkina, A. M. Danilov, “Solutions of the Klein–Gordon equation of traveling wave type, which smoothed at infinity”, Fundamental Research, 2014, no. 5-5, 1000–1005 (In Russian)
[8] P. A. Velmisov, Yu. A. Kazakova, “On solutions of “travelling wave” type of partial differential equations”, Mathematical Methods and Models: Theory, Applications and Role in Education, 2011, no. 2, 102–108 (In Russian)
[9] T. D. Dzhuraev, Yu. P. Apakov, “On self-similar solution of an equation of the third order with multiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007), 18–26 (In Russian) | DOI
[10] B. T. Mekenbaev, Ch. T. Duishenaliev, “Self-similar solutions of gravitational flows dynamics in inclined channels”, Caspian Journal: Control and High Technologies, 2016, no. 3(35), 59–71 (In Russian)
[11] E. V. Teodorovich, “Avtomodelnoe reshenie ploskoi zadachi ob evolyutsii treschiny gidrorazryva v uprugoi srede”, Prikladnaya matematika i mekhanika, 74:2 (2010), 252–261
[12] A. V. Shmidt, “Avtomodelnoe reshenie zadachi o turbulentnom techenii krugloi zatoplennoi strui”, Prikladnaya mekhanika i tekhnicheskaya fizika, 56:3(331) (2015), 82–88
[13] B. V. Alekseev, I. V. Ovchinnikova, “Self-similar solutions of hydrodynamic equations of nonlocal physics”, Bulletin of the M. V. Lomonosov MITHT, 9:6 (2014), 47–54 (In Russian)
[14] A. V. Arguchintsev, “Reshenie zadachi optimalnogo upravleniya nachalno-kraevymi usloviyami giperbolicheskoi sistemy na osnove tochnykh formul prirascheniya”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2002, no. 12, 23–29 | MR | Zbl
[15] A. V. Solov'ev, A. V. Danilin, “Using the Sharp scheme of higher-order accuracy for solving some nonlinear hyperbolic systems of equations”, Num. Meth. Prog., 20:1 (2019), 45–53 (In Russian)
[16] J. O. Yakovleva, A. V. Tarasenko, “The solution of Cauchy problem for the hyperbolic differential equations of the fourth order by the Riman method”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:3 (2019), 33–38 (In Russian) | DOI
[17] R. Yu. Novikov, “Numerical solution of equations of hyperbolic type”, Double Technologies, 2011, no. 3(56), 48–51 (In Russian)
[18] O. P. Komurdzhishvili, “Raznostnye skhemy dlya resheniya mnogomernykh uravnenii i sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 980–987
[19] G. A. Abdikalikova, A. H. Zhumagaziyev, “Construction of the multiperiodical solution of one problem for a nonlinear of hyperbolic system equations”, Sciences of Europe, 12:12 (2007), 15–19 (In Russian)
[20] V. V. Tarasevich, Development of the theory and methods for calculating hydrodynamic processes in pressure pipeline systems, Abstr. Diss. ... Doc. Tech. Sciences, Novosibirsk, 2017, 38 pp. (In Russian)
[21] A. D. Polyanin, V. F. Zaitsev, A. Yu. Zhurov, Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics, FIZMATLIT Publ., Moscow, 2005 (In Russian)
[22] E. Yu. Grazhdantseva, S. V. Solodusha, “On an analytical solution of a nonlinear partial differential equation”, Nonlinear Analysis and Extremal Problems, Proceedings of the 7th International Conference on Nonlinear Analysis and Extremal Problems (NLA-2022) (Irkutsk, July 15–22, 2022), ed. A. A. Tolstonogov, ISDCT SB RAS, Irkutsk, 2022, 42–43 (In Russian)