On exact solution of a hyperbolic system of differential equations
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 328-338
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a hyperbolic system of two first-order partial differential equations with constant coefficients, one of which is nonlinear and contains the square of one of the unknown functions. Moreover, each equation contains two unknown functions which in turn depend on two variables. Exact solutions are found for this system: a traveling wave solution and a self-similar solution. There is also defined the type of initial-boundary conditions which allow to use the constructed general solutions in order to write out a solution of the initial-boundary value problem for the system of differential equations under consideration.
Keywords: hyperbolic system of partial differential equations, traveling wave solution, selfsimilar solution.
@article{VTAMU_2022_27_140_a2,
     author = {E. Yu. Grazhdantseva},
     title = {On exact solution of a hyperbolic system of differential equations},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {328--338},
     year = {2022},
     volume = {27},
     number = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/}
}
TY  - JOUR
AU  - E. Yu. Grazhdantseva
TI  - On exact solution of a hyperbolic system of differential equations
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 328
EP  - 338
VL  - 27
IS  - 140
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/
LA  - ru
ID  - VTAMU_2022_27_140_a2
ER  - 
%0 Journal Article
%A E. Yu. Grazhdantseva
%T On exact solution of a hyperbolic system of differential equations
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 328-338
%V 27
%N 140
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/
%G ru
%F VTAMU_2022_27_140_a2
E. Yu. Grazhdantseva. On exact solution of a hyperbolic system of differential equations. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 328-338. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a2/

[1] B. L. Rozhdestvensky, N. N. Yanenko, Systems of Quasilinear Equations and their Applications in Gas Dynamics, Nauka Publ., Moscow, 1978 (In Russian)

[2] A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “On solutions of the traveling wave type for the nonlinear heat equation”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 196, VINITI, Moscow, 2021, 36–43 (In Russian) | DOI

[3] V. R. Tagirova, “A solution to the hydraulic fracture problem in the traveling wave form”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 4, 46–48 (In Russian)

[4] A. D. Polyanin, “Neklassicheskie (neinvariantnye) resheniya tipa beguschei volny i avtomodelnye resheniya”, Doklady akademii nauk, 398:1 (2004), 33–37

[5] S. V. Pikulin, “O resheniyakh tipa beguschei volny uravneniya Kolmogorova–Petrovskogo–Piskunova”, Zh. vychisl. matem. i matem. fiz., 58:2 (2018), 244–252 | DOI

[6] Kh. S. Kuchakshoev, “Bounded solutions of the traveling wave type and some particular solutions of the Keller–Siegel system”, Reports of the Academy of Sciences of the Republic of Tajikistan, 54:8 (2011), 610–617 (In Russian)

[7] E. A. Budylina, E. G. Murachev, I. A. Garkina, A. M. Danilov, “Solutions of the Klein–Gordon equation of traveling wave type, which smoothed at infinity”, Fundamental Research, 2014, no. 5-5, 1000–1005 (In Russian)

[8] P. A. Velmisov, Yu. A. Kazakova, “On solutions of “travelling wave” type of partial differential equations”, Mathematical Methods and Models: Theory, Applications and Role in Education, 2011, no. 2, 102–108 (In Russian)

[9] T. D. Dzhuraev, Yu. P. Apakov, “On self-similar solution of an equation of the third order with multiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007), 18–26 (In Russian) | DOI

[10] B. T. Mekenbaev, Ch. T. Duishenaliev, “Self-similar solutions of gravitational flows dynamics in inclined channels”, Caspian Journal: Control and High Technologies, 2016, no. 3(35), 59–71 (In Russian)

[11] E. V. Teodorovich, “Avtomodelnoe reshenie ploskoi zadachi ob evolyutsii treschiny gidrorazryva v uprugoi srede”, Prikladnaya matematika i mekhanika, 74:2 (2010), 252–261

[12] A. V. Shmidt, “Avtomodelnoe reshenie zadachi o turbulentnom techenii krugloi zatoplennoi strui”, Prikladnaya mekhanika i tekhnicheskaya fizika, 56:3(331) (2015), 82–88

[13] B. V. Alekseev, I. V. Ovchinnikova, “Self-similar solutions of hydrodynamic equations of nonlocal physics”, Bulletin of the M. V. Lomonosov MITHT, 9:6 (2014), 47–54 (In Russian)

[14] A. V. Arguchintsev, “Reshenie zadachi optimalnogo upravleniya nachalno-kraevymi usloviyami giperbolicheskoi sistemy na osnove tochnykh formul prirascheniya”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2002, no. 12, 23–29 | MR | Zbl

[15] A. V. Solov'ev, A. V. Danilin, “Using the Sharp scheme of higher-order accuracy for solving some nonlinear hyperbolic systems of equations”, Num. Meth. Prog., 20:1 (2019), 45–53 (In Russian)

[16] J. O. Yakovleva, A. V. Tarasenko, “The solution of Cauchy problem for the hyperbolic differential equations of the fourth order by the Riman method”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:3 (2019), 33–38 (In Russian) | DOI

[17] R. Yu. Novikov, “Numerical solution of equations of hyperbolic type”, Double Technologies, 2011, no. 3(56), 48–51 (In Russian)

[18] O. P. Komurdzhishvili, “Raznostnye skhemy dlya resheniya mnogomernykh uravnenii i sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 980–987

[19] G. A. Abdikalikova, A. H. Zhumagaziyev, “Construction of the multiperiodical solution of one problem for a nonlinear of hyperbolic system equations”, Sciences of Europe, 12:12 (2007), 15–19 (In Russian)

[20] V. V. Tarasevich, Development of the theory and methods for calculating hydrodynamic processes in pressure pipeline systems, Abstr. Diss. ... Doc. Tech. Sciences, Novosibirsk, 2017, 38 pp. (In Russian)

[21] A. D. Polyanin, V. F. Zaitsev, A. Yu. Zhurov, Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics, FIZMATLIT Publ., Moscow, 2005 (In Russian)

[22] E. Yu. Grazhdantseva, S. V. Solodusha, “On an analytical solution of a nonlinear partial differential equation”, Nonlinear Analysis and Extremal Problems, Proceedings of the 7th International Conference on Nonlinear Analysis and Extremal Problems (NLA-2022) (Irkutsk, July 15–22, 2022), ed. A. A. Tolstonogov, ISDCT SB RAS, Irkutsk, 2022, 42–43 (In Russian)