On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 318-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present research, existence and stability of ring solutions to two-dimensional Amari neural field equation with periodic microstructure and Heaviside activation function are studied. Results on dependence of the inner and the outer radii of the ring solutions are obtained. Necessary conditions for existence and sufficient conditions for non-existence of radial travelling waves are formulated for homogeneous neural medium and neural media with mild periodic microstructure. Theoretical results obtained are illustrated with a concrete example based on a connectivity function commonly used in the neuroscience community.
Keywords: mathematical neuroscience, neural field models with microstructure, two-dimensional neural field equation, ring solution, stability of solutions, radial travelling waves.
Mots-clés : existence of solutions
@article{VTAMU_2022_27_140_a1,
     author = {R. Atmania and E. O. Burlakov and I. N. Malkov},
     title = {On existence and stability of ring solutions to {Amari} neural field equation with periodic microstructure and {Heaviside} activation function},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {318--327},
     year = {2022},
     volume = {27},
     number = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/}
}
TY  - JOUR
AU  - R. Atmania
AU  - E. O. Burlakov
AU  - I. N. Malkov
TI  - On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 318
EP  - 327
VL  - 27
IS  - 140
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/
LA  - ru
ID  - VTAMU_2022_27_140_a1
ER  - 
%0 Journal Article
%A R. Atmania
%A E. O. Burlakov
%A I. N. Malkov
%T On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 318-327
%V 27
%N 140
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/
%G ru
%F VTAMU_2022_27_140_a1
R. Atmania; E. O. Burlakov; I. N. Malkov. On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 318-327. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/

[1] P. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2011), 033001 | DOI

[2] E. O. Burlakov, T. V. Zhukovskaya, E. S. Zhukovskiy, N. P. Puchkov, “On continuous and discontinuous models of neural fields”, Journal of Mathematical Sciences, 259:3 (2021), 272–282 | DOI

[3] S. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biological Cybernetics, 27 (1977), 77–87 | DOI

[4] S. Kishimoto, S. Amari, “Existence and stability of local excitations in homogeneous neural fields”, Journal of Mathematical Biology, 7 (1979), 303–318 | DOI

[5] C. R. Laing, W. C. Troy, “Two-bump solutions of Amari-type models of neuronal pattern formation”, Physica D: Nonlinear Phenomena, 178 (2003), 190–218 | DOI

[6] K. Kolodina, V. V. Kostrykin, A. Oleynik, “Existence and stability of periodic solutions in a neural field equation”, Russian Universities Reports. Mathematics, 26:135 (2021), 271–295 | DOI

[7] S. Coombes, “Waves, bumps, and patterns in neural field theories”, Biological Cybernetics, 93 (2005), 91–108 | DOI

[8] M. R. Owen, C. R. Laing, S. Coombes, “Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities”, New Journal of Physics, 9 (2007), 378 | DOI

[9] N. Svanstedt, J. Wyller, E. Malyutina, “A one-population Amari model with periodic microstructure”, Nonlinearity, 27 (2014), 1391–1417 | DOI

[10] E. Malyutina, J. Wyller, A. Ponosov, “Two bumps solutions of a homogenized Wilson-Cowan model with periodic microstructure”, Physica D: Nonlinear Phenomena, 271 (2014), 19–31 | DOI

[11] E. Burlakov, J. Wyller, A. Ponosov, “Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions”, Communications in Nonlinear Science and Numerical Simulation, 32 (2016), 81–88 | DOI

[12] E. O. Burlakov, I. N. Malkov, “On connection between continuous and discontinuous neural field models with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)”, Russian Universities Reports. Mathematics, 25:129 (2020), 6–17 (In Russian) | DOI

[13] J. A. Murdock, F. Botelho, J. E. Jamison, “Persistence of spatial patterns produced by neural field equations”, Physica D: Nonlinear Phenomena, 215 (2006), 106–116 | DOI

[14] E. Burlakov, V. Verkhlyutov, V. Ushakov, “A simple human brain model reproducing evoked MEG based on neural field theory”, Advances in Neural Computation, Machine Learning, and Cognitive Research V, Studies in Computational Intelligence, 1008, ed. B. Kryzhanovsky, W. Dunin–Barkowski, V. Redko, Y. Tiumentsev, 2021, 109–116 | DOI