Mots-clés : existence of solutions
@article{VTAMU_2022_27_140_a1,
author = {R. Atmania and E. O. Burlakov and I. N. Malkov},
title = {On existence and stability of ring solutions to {Amari} neural field equation with periodic microstructure and {Heaviside} activation function},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {318--327},
year = {2022},
volume = {27},
number = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/}
}
TY - JOUR AU - R. Atmania AU - E. O. Burlakov AU - I. N. Malkov TI - On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 318 EP - 327 VL - 27 IS - 140 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/ LA - ru ID - VTAMU_2022_27_140_a1 ER -
%0 Journal Article %A R. Atmania %A E. O. Burlakov %A I. N. Malkov %T On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 318-327 %V 27 %N 140 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/ %G ru %F VTAMU_2022_27_140_a1
R. Atmania; E. O. Burlakov; I. N. Malkov. On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 318-327. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a1/
[1] P. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2011), 033001 | DOI
[2] E. O. Burlakov, T. V. Zhukovskaya, E. S. Zhukovskiy, N. P. Puchkov, “On continuous and discontinuous models of neural fields”, Journal of Mathematical Sciences, 259:3 (2021), 272–282 | DOI
[3] S. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biological Cybernetics, 27 (1977), 77–87 | DOI
[4] S. Kishimoto, S. Amari, “Existence and stability of local excitations in homogeneous neural fields”, Journal of Mathematical Biology, 7 (1979), 303–318 | DOI
[5] C. R. Laing, W. C. Troy, “Two-bump solutions of Amari-type models of neuronal pattern formation”, Physica D: Nonlinear Phenomena, 178 (2003), 190–218 | DOI
[6] K. Kolodina, V. V. Kostrykin, A. Oleynik, “Existence and stability of periodic solutions in a neural field equation”, Russian Universities Reports. Mathematics, 26:135 (2021), 271–295 | DOI
[7] S. Coombes, “Waves, bumps, and patterns in neural field theories”, Biological Cybernetics, 93 (2005), 91–108 | DOI
[8] M. R. Owen, C. R. Laing, S. Coombes, “Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities”, New Journal of Physics, 9 (2007), 378 | DOI
[9] N. Svanstedt, J. Wyller, E. Malyutina, “A one-population Amari model with periodic microstructure”, Nonlinearity, 27 (2014), 1391–1417 | DOI
[10] E. Malyutina, J. Wyller, A. Ponosov, “Two bumps solutions of a homogenized Wilson-Cowan model with periodic microstructure”, Physica D: Nonlinear Phenomena, 271 (2014), 19–31 | DOI
[11] E. Burlakov, J. Wyller, A. Ponosov, “Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions”, Communications in Nonlinear Science and Numerical Simulation, 32 (2016), 81–88 | DOI
[12] E. O. Burlakov, I. N. Malkov, “On connection between continuous and discontinuous neural field models with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)”, Russian Universities Reports. Mathematics, 25:129 (2020), 6–17 (In Russian) | DOI
[13] J. A. Murdock, F. Botelho, J. E. Jamison, “Persistence of spatial patterns produced by neural field equations”, Physica D: Nonlinear Phenomena, 215 (2006), 106–116 | DOI
[14] E. Burlakov, V. Verkhlyutov, V. Ushakov, “A simple human brain model reproducing evoked MEG based on neural field theory”, Advances in Neural Computation, Machine Learning, and Cognitive Research V, Studies in Computational Intelligence, 1008, ed. B. Kryzhanovsky, W. Dunin–Barkowski, V. Redko, Y. Tiumentsev, 2021, 109–116 | DOI