Mots-clés : group algebras, von Neumann algebras, Banach bimodules.
@article{VTAMU_2022_27_140_a0,
author = {A. A. Arutyunov},
title = {On derivations in group algebras and other algebraic structures},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {305--317},
year = {2022},
volume = {27},
number = {140},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a0/}
}
A. A. Arutyunov. On derivations in group algebras and other algebraic structures. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 140, pp. 305-317. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_140_a0/
[1] M. Nagumo, “Einige analytische Untersuchungen in linearen metrischen Ringen”, Japan J. Math., 13 (1936), 61–80
[2] I. Gelfand, “Normierte Ringe”, Matem. sb., 9(51):1 (1941), 3–24 | MR | Zbl
[3] I. Gelfand, M. Neumark, “On the imbedding of normed rings into the ring of operators in Hilbert space”, Matem. sb., 12(54):2 (1943), 197–217 | MR | Zbl
[4] I. Kaplansky, “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858
[5] I. Kaplansky, “Projections in banach algebras”, Annals of Mathematics, 53:2 (1950), 235–249
[6] S. Sakai, “On a conjecture of Kaplansky”, Tohoku Math. J., 12:2 (1960), 31–33
[7] S. Sakai, “Derivations of $W^*$-algebras”, Annals of Mathematics, 83:2 (1966), 273–279
[8] S. Sakai, “Derivations of simple $C^*$-algebras”, J. Functional Analysis, 2:2 (1968), 202–206
[9] S. Sakai, $C^*$-algebras and $W^*$-algebras, Classics in Mathematics, Springer-Verlag Berlin Heidelberg, Berlin, 1998
[10] C. A. Akemann, G. A. Elliott, G. K. Pedersen, J. Tomiyama, “Derivations and multipliers of $C^*$-algebras”, Amer. J. Math., 98:3 (1976), 679–708
[11] C. A. Akemann, G. K. Pedersen, “Central sequences and inner derivations of separable $C^*$-algebras”, Amer. J. Math., 101 (1979), 1047–1061
[12] B. E. Johnson, A. M. Sinclair, “Continuity of derivations and a problem of Kaplansky”, Amer. J. Math., 90:4 (1968), 1067–1073
[13] G. A. Elliott, “Some $C^*$-algebras with outer derivations, III”, Annals of Mathematics, 106 (1977), 121–143
[14] $C^*$-Algebras and Their Automorphism Groups, v. 14, ed. G. K. Pedersen, Academic Press, 1979
[15] I. Kaplansky, “Derivations of Banach Algebras”, Analytic functions as related to Banach algebras, v. II, Seminars on Analytic Functions, V, Princeton Univ. Press, Princeton, N.J., 1958, 254–258
[16] S. Sakai, Operator Algebras in Dynamical Systems, The theory of unbounded derivations in $C^*$-algebras https://doi.org/10.1017/CBO9780511662218, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1991
[17] R. V. Kadison, “Derivations of operator algebras”, Ann. of Math., 83 (1966), 280–293
[18] R. V. Kadison, J. R. Ringrose, “Derivations of operator group algebras”, Amer. J. Math., 88:3 (1966), 562–576
[19] R. V. Kadison, J. R. Ringrose, “Derivations and automorphisms of operator algebras”, Commun. Math. Phys., 4 (1967), 32–63
[20] B. E. Johnson, J. R. Ringrose, “Derivations of operator algebras and discrete group algebras”, Bull. London Math. Soc., 1 (1969), 70–74
[21] B. E. Johnson, Cohomology in Banach Algebras, Mamoirs of the American Mathematical Society, 127, American Mathematical Society, Providence, Rhode Island, USA, 1972
[22] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, 24, Oxford University Press, New York, 2000, 928 pp.
[23] B. E. Johnson, “The derivation problem for group algebras of connected locally compact groups”, Journal of the London Mathematical Society, 63:2 (2001), 441–452
[24] V. Losert, “The derivation problem for group algebras”, Annals of Mathematics, 168:1 (2008), 221–246
[25] B. E. Johnson, S. Parrott, “Operators commuting with a von Neumann algebras modulo the set of compact operators”, Journal of Functional Analysis, 11 (1972), 39–61
[26] S. Popa, “The commutant modulo the set of compact operators of a von Neumann algebra”, Journal of Functional Analysis, 71 (1987), 393–408
[27] A. Ber, J. Huang, G. Letvina, F. Sukochev, “Derivations with values in ideals of semifinite von Neumann algebras”, Journal of Functional Analysis, 272:12 (2017), 4984–4997
[28] J. Huang, Derivations with values into ideals of a semifinite von Neumann algebra, , Australia's Global University, School of Mathematics and Statistics Faculty of Science, 2019 http://hdl.handle.net/1959.4/63344
[29] A. Ber, J. Huang, K. Kudaybergenov, F. Sukochev, “Non-existence of translation-invariant derivations on algebras of measurable functions”, Quaestiones Mathematicae, 45:10 (2022) | DOI
[30] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Mathematics and its Applications, 41, Kluwer Academic Publishers, Amsterdam, 1989
[31] A. Ya. Helemskii, Banach and Locally Convex Algebras, Oxford Mathematical Monographs, Claredon Press, 1993
[32] G. Hochschild, “On the cohomology groups of an associative algebra”, Annals of Mathematics, 46:1 (1945), 58–67
[33] G. Hochschild, B. Kostant, A. Rosenberg, “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc, 102:3 (1962), 383–408, Springer Science+Business Media, New York | DOI
[34] S. Witherspoon, An Introduction to Hochschild Cohomology, Texas AM University, 2017
[35] D. Burghelea, “The cyclic homology of the group rings”, Commentarii Mathematici Helvetici, 60 (1985), 354–365
[36] A. S. Mischenko, “Derivations of group algebras and Hochschild cohomology”, Differential Equations on Manifolds and Mathematical Physics – Dedicated to the Memory of Boris Sternin, 2020, arXiv: 1811.02439
[37] A. S. Mischenko, “Geometric description of the Hochschild Cohomology of group algebras”, Topology, Geometry, and Dynamics: Rokhlin Memorial, Contemporary Mathematics, 772, AMS, Providence, R.I., etc., United States, 2021, 267–279
[38] A. S. Mischenko, “Description of outer derivations of the group algebras”, Topology and its Applications, 275 (2020), 107013, arXiv: 1811.02439
[39] M. Lorentz, R. Willett, “Bounded derivations on uniform Roe algebras”, Rocky Mountain J. Math., 50 (2020), 1747–1758
[40] V. Manuilov, On Hochschild homology of uniform Roe algebras with coefficients in uniform Roe bimodules, arXiv: 2201.06488
[41] M. K. Smith, “Derivations of group algebras of finitely-generated, torsion-free, nilpotent groups”, Houston J. Math., 4 (1978), 277–288
[42] E. Spiegel, “Derivations of integral group rings”, Communications in Algebra, 22:8 (1994), 2955–2959
[43] D. Boucher, D. Ulmer, “Linear codes using skew polynomials with automorphisms and derivations”, Des. Codes Cryptogr., 70 (2014), 405–431
[44] L. Creedon, K. Hughes, “Derivations on group algebras with coding theory applications”, Finite Fields and Their Applications, 56 (2019), 247–265
[45] O. D. Artemovych, V. A. Bovdi, M. A. Salim, Derivations of group rings, 2020, arXiv: 2003.01346
[46] Y. Rao, S. Kosari, A. Khan, N. Abbasizadeh, “A Study on special kinds of derivations in ordered hyperrings”, Symmetry, 14 (2022), 2205 https://www.researchgate.net/publication/364385863_A_Study_on_Special_Kinds_of_Derivations_in_Ordered_Hyperrings
[47] D. Chaudhuri, “$(\sigma,\tau)$-derivations of group rings”, Comm. Algebra, 47:9 (2019), 3800–3807 | DOI
[48] O. Ore, “Theory of non-commutative polynomials”, Ann. Math., 34 (1933), 480–508
[49] V. K. Kharchenko, Automorphisms and Derivations of Associative Rings, Mathematics and its Applications, 69, Kluwer Academic Publishers, Amsterdam, 1991
[50] F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables, Moscow University Press, Moscow, 1983
[51] L. A. Bokut, I. V. Lvov, V. K. Kharchenko, “Noncommutative Rings”, Algebra – 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 18, VINITI, Moscow, 1988, 5–116
[52] P. M. Cohn, Difference Algebra, Interscience Publ., New York, 1965
[53] P. M. Cohn, Skew Fields Constructions, London Mathematical Society Lecture Note Series, 27, Cambridge University Press, Cambridge, 1977
[54] K. R. Goodearl, R. B. Warfield, Jr, An Introduction to Non-Commutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989
[55] D. A. Jordan, “Iterated skew polynomial rings and quantum groups”, Journal of Algebra, 156 (1993), 194–218
[56] V. Kac, P. Cheung, Quantum Calculus, Universitext (UTX), Springer, New York, 2002
[57] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, 1st ed., Springer-Verlag, New York, 1995
[58] T. Y. Lam, A. Leroy, “Algebraic conjugacy classes and skew polynomial rings”, Perspectives in Ring Theory, NATO ASI Series, 233, eds. F. van Oystaeyen, L. Le Bruyn, Springer, Dordrecht, 1988, 153-203
[59] J. T. Hartwig, D. Larsson, S. D. Silvestrov, “Deformations of Lie algebras using $\sigma$-derivations”, Journal of Algebra, 295:2 (2006), 314–361 | DOI
[60] D. Larsson, S. D. Silvestrov, “Quasi-deformations of $sl_2(\mathbb{F})$ using twisted derivations”, Comm. Algebra, 35:12 (2007), 4303–4318 | DOI
[61] Yu. I. Manin, Topics in Non-Commutative Geometry, Porter Lectures, Princeton University Press, 1991
[62] L. R. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and Its Applications, 330, Springer, Dordrecht, 1995
[63] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, Amer. Math. Society, Providence, Rhode Island, 1987
[64] Heide Gluesing-Luerssen, Skew-Polynomial Rings and Skew-Cyclic Codes, 2019, arXiv: 1902.03516
[65] D. Larsson, S. D. Silvestrov, “Quasi-hom-Lie algebras, central extensions and $2$-cocycle-like identities”, Journal of Algebra, 288:2 (2005), 321–344 | DOI
[66] O. Elchinger, K. Lundengard, A. Makhlouf, S. D. Silvestrov, “Brackets with $(\tau,\sigma)$-derivations and $(p,q)$-deformations of Witt and Virasoro algebras”, Forum Math., 28:4 (2016), 657–673 | DOI
[67] G. Song, C. Xia, “Simple deformed Witt algebras”, Algebra Colloquium, 18:3 (2011), 533–540 | DOI
[68] G. Song, Y. Wu, B. Xin, “The $\sigma$-derivations of $C[x^{\pm 1}, y^{\pm 1}]$”, Algebra Colloquium, 22:2 (2015), 251–258, World Scientific Pub Co Pte Lt | DOI
[69] E. Gordji, “A characterization of $(\sigma,\tau)$-derivations on von Neumann algebras”, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 73 (2009), arXiv: 0903.0830
[70] R. H. Fox, “Free differential calculus. I: Derivation in the free group ring”, The Annals of Mathematics, 57:3 (1953), 547–560, JSTOR | DOI
[71] R. H. Fox, “Free differential calculus. II: The isomorphism problem of groups”, The Annals of Mathematics, 59:2 (1954), 196–210, JSTOR | DOI
[72] R. H. Fox, “Free differential calculus {III}. Subgroups”, The Annals of Mathematics, 64:3 (1956), 407–419, JSTOR | DOI
[73] K. T. Chen, R. H. Fox, R. C. Lyndon, “Free differential calculus IV. The quotient groups of the lower central series”, The Annals of Mathematics, 68:1 (1958), 81–95, JSTOR | DOI
[74] R. H. Fox, “Free differential calculus V. The Alexander matrices re-examined”, The Annals of Mathematics, 71:3 (1960), 408–422, JSTOR | DOI
[75] G. Massuyeau, V. Turaev, Quasi-Poisson structures on representation spaces of surfaces, 2012, arXiv: 1205.4898
[76] A. N. Parshin, “O koltse formalnykh psevdodifferentsialnykh operatorov”, Algebra. Topologiya. Differentsialnye uravneniya i ikh prilozheniya, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Trudy MIAN, 224, Nauka, MAIK «Nauka/Interperiodika», M., 1999, 291–305 | MR | Zbl
[77] A. Zheglov, Schur-Sato theory for quasi-elliptic rings, 2022, arXiv: 2205.06790
[78] V. P. Maslov, Operator Methods, Nauka Publ., Moscow, 1973 (In Russian)
[79] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Dobrosvet Publ., Moscow (In Russian)
[80] M. F. Atiyah, I. M. Singer, “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69:3 (1963), 422–433 https://www.ams.org/journals/bull/1963-69-03/S0002-9904-1963-10957-X/
[81] M. F. Atiyah, I. M. Singer, “The index of elliptic operators I”, Annals of Mathematics, 87:3 (1968), 484–530
[82] I. N. Herstein, “Sui commutatori degli anelli semplici”, Seminario Mat. e. Fis. di Milano, 33 (1963), 80–86 | DOI
[83] V. K. Kharchenko, “Differential identities of prime rings”, Algebra and Logic, 17 (1978), 155–168
[84] P. Grzeszczuk, “On nilpotent derivations of semiprime rings”, Journal of Algebra, 149 (1992), 313–321
[85] C. Chen-Lian, L. Tsiu-Kwen, “Nilpotent derivations”, Journal of Algebra, 287:2 (2005), 381–401 | DOI
[86] D. Wright, “On the Jacobian Conjecture”, Illinois J. Math, 25 (1981), 423–440
[87] M. Nagata, “On the fourteenth problem of Hilbert”, Proceedings of the International Congress of Mathematicians, Cambridge University Press., Edinburgh, 1958, 459–462
[88] M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research Lectures on Mathematics, 31, Tata Institute of Fundamental Research, Bombai, 1965, 65 pp. http://www.math.tifr.res.in/p̃ubl/ln/tifr31.pdf
[89] M. Ferrero, Y. Lequain, A. Nowicki, “A note on locally nilpotent derivations”, Journal of Pure and Applied Algebra, 79 (1992), 45–50 https://www-users.mat.umk.pl/ãnow/ps-dvi/035-lok.pdf
[90] D. Daigle, “Locally nilpotent derivations and the structure of rings”, Journal of Pure and Applied Algebra, 224:4 (2020), 106–201, Elsevier BV | DOI
[91] S. Maubach, “The commuting derivations conjecture”, Journal of Pure and Applied Algebra, 179:1–2 (2003), 159–168
[92] Jiantao Li, Xiankun Du, “Pairwise commuting derivations of polynomial rings”, Linear Algebra and its Applications, 436:7, 2375–2379
[93] A. A. Arutyunov, A. S. Mischenko, A. I. Shtern, “Derivatsii gruppovykh algebr”, Fundament. i prikl. matem., 21:6 (2016), 65–78; A. A. Arutyunov, A. S. Mishchenko, A. I. Shtern, “Derivations of group algebras”, Journal of Mathematical Sciences, 248 (2020), 709–718 | DOI
[94] A. A. Arutyunov, A. S. Mischenko, “Gladkaya versiya problemy Dzhonsona o derivatsiyakh gruppovykh algebr”, Matem. sb., 210:6 (2019), 3–29 | DOI | MR
[95] A. A. Arutyunov, “Algebra differentsirovanii v nekommutativnykh gruppovykh algebrakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 308, MIAN, M., 2020, 28–41 | DOI
[96] A. A. Arutyunov, A. V. Alekseev, “Cohomology of $n$-categories and derivations in group algebras”, Topology and its Applications, 275 (2019) | DOI
[97] A. Arutyunov, A combinatorial view on derivations in bimodules, 2022, arXiv: 2208.05478
[98] A. A. Arutyunov, A. S. Mischenko, “Reduktsiya ischisleniya psevdodifferentsialnykh operatorov na nekompaktnom mnogoobrazii k ischisleniyu na kompaktnom mnogoobrazii udvoennoi razmernosti”, Matem. zametki, 94:4 (2013), 488–505 | DOI | MR | Zbl
[99] A. A. Arutyunov, A. S. Mischenko, “Reduktsiya PDO ischisleniya na nekompaktnom mnogoobrazii k kompaktnomu mnogoobraziyu udvoennoi razmernosti”, Doklad. RAN, 451:4 (2013), 369–373
[100] A. A. Arutyunov, “Reduktsiya nelokalnykh psevdodifferentsialnykh operatorov na nekompaktnom mnogoobrazii k klassicheskim psevdodifferentsialnym operatoram na kompaktnom mnogoobrazii udvoennoi razmernosti”, Matem. zametki, 97:4 (2015), 493–502 | DOI | MR | Zbl