On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 284-299

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a parametric problem of the form $$f(x,y)\to \inf, \ \ x\in M,$$ where $M$ is a convex closed subset of a Hilbert or uniformly convex space $X,$ $y$ is a parameter belonging to a topological space $Y.$ For this problem, the set of $\epsilon$ -optimal points is given by $$ a_{\epsilon}(y)=\{ x\in M \,|\, f(x,y)\leq \inf_{x\in M}f(x,y) +\epsilon\},$$ where $\epsilon>0.$ Conditions for the semicontinuity and continuity of the multivalued mapping $a_{\epsilon}$ are discussed. Using gradient projection and linearization methods, we obtain theorems on the existence of continuous selections of the multivalued mapping $a_{\epsilon}.$ One of the main assumptions of these theorems is the convexity of the functional $f(x,y)$ with respect to the variable $x$ on the set $M$ and continuity of the derivative $f'_x(x,y)$ on the set $M\times Y.$ Examples that confirm the significance of the assumptions made are given, as well as examples illustrating the application of the obtained statements to optimization problems.
Keywords: strictly convex functions, projection operator, fixed points of a mapping, multivalued mapping, continuous selections, set of $\epsilon$-optimal points.
@article{VTAMU_2022_27_139_a6,
     author = {R. A. Khachatryan},
     title = {On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {284--299},
     publisher = {mathdoc},
     volume = {27},
     number = {139},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a6/}
}
TY  - JOUR
AU  - R. A. Khachatryan
TI  - On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 284
EP  - 299
VL  - 27
IS  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a6/
LA  - ru
ID  - VTAMU_2022_27_139_a6
ER  - 
%0 Journal Article
%A R. A. Khachatryan
%T On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 284-299
%V 27
%N 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a6/
%G ru
%F VTAMU_2022_27_139_a6
R. A. Khachatryan. On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 284-299. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a6/