On properties of solutions to differential systems modeling the electrical activity of the brain
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 270-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hopfield-type model of the dynamics of the electrical activity of the brain, which is a system of differential equations of the form \begin{equation*} \dot{v}_{i}= -\alpha v_{i}+\sum_{j=1}^{n}w_{ji}f_{\delta}(v_{j})+I_{i}( t), \ \ \, i=\overline{1,n}, \ \ \, t\geq 0, \end{equation*} is investigated. The model parameters are assumed to be given: $\alpha>0,$ $w_{ji}>0$ for $i\neq j$ and $w_{ii}=0,$ $I_{i}(t)\geq 0.$ The activation function $f_{\delta}$ ($\delta$ is the time of the neuron transition to the state of activity) of two types is considered: $$ \delta=0 \ \Rightarrow f_{0}(v)=\left\{ \begin{array}{ll} 0, &v\leq\theta,\\ 1, &v>\theta; \end{array}\right. \ \ \ \ \ \ \delta> 0 \ \Rightarrow \ f_{\delta}(v)=\left\{ \begin{array}{ll} 0, & v\leq \theta,\\ {\delta}^{-1}( v-\theta), & \theta < v \leq \theta+\delta,\\ 1, &v>\theta+\delta. \end{array}\right.$$ In the case of $\delta> 0$ (the function $f_{\delta}$ is continuous), the solution of the Cauchy problem for the system under consideration exists, is unique, and is non-negative for non-negative initial values. In the case of $\delta= 0$ (the function $f_{0}$ is discontinuous at the point $\theta$), it is shown that the set of solutions of the Cauchy problem has the largest and the smallest solutions, estimates for the solutions are obtained, and an example of a system for which the Cauchy problem has an infinite number of solutions is given. In this study, methods of analysis of mappings acting in partially ordered spaces are used. An improved Hopfield model is also investigated. It takes into account the time of movement of an electrical impulse from one neuron to another, and therefore such a model is represented by a system of differential equations with delay. For such a system, both in the case of continuous and in the case of discontinuous activation function, it is shown that the Cauchy problem is uniquely solvable, estimates for the solution are obtained, and an algorithm for analytical finding of solution is described.
Keywords: neural network, differential equation with discontinuous right-hand side, delay, Cauchy problem, upper and lower solutions, mappings of partially ordered spaces.
Mots-clés : existence of solution
@article{VTAMU_2022_27_139_a5,
     author = {A. S. Lanina and E. A. Pluzhnikova},
     title = {On properties of solutions to differential systems modeling the electrical activity of the brain},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {270--283},
     year = {2022},
     volume = {27},
     number = {139},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/}
}
TY  - JOUR
AU  - A. S. Lanina
AU  - E. A. Pluzhnikova
TI  - On properties of solutions to differential systems modeling the electrical activity of the brain
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 270
EP  - 283
VL  - 27
IS  - 139
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/
LA  - ru
ID  - VTAMU_2022_27_139_a5
ER  - 
%0 Journal Article
%A A. S. Lanina
%A E. A. Pluzhnikova
%T On properties of solutions to differential systems modeling the electrical activity of the brain
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 270-283
%V 27
%N 139
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/
%G ru
%F VTAMU_2022_27_139_a5
A. S. Lanina; E. A. Pluzhnikova. On properties of solutions to differential systems modeling the electrical activity of the brain. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 270-283. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/

[1] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties”, Proc. Nat. Acad. Sci., 79 (1982), 2554–2558 | DOI | MR | Zbl

[2] V. L. Bykov, Cytology and General Histology, Sothis, St. Petersburg, 2018 (In Russian)

[3] P. Van den Driesche, X. Zou, “Global attractivity in delayed Hopfield neural network models”, SIAM J. Appl. Math., 58 (1998), 1878–1890 | DOI | MR | Zbl

[4] A. S. Lanina, E. A. Pluzhnikova, “On one model of electrical activity of the brain”, Modeling and Optimization of Complex Systems MOCS-2022, Abstracts of the International School of Young Scientists (Suzdal, June 30 – July 5), Arkaim Publ., Vladimir, 2022, 31–32 (In Russian)

[5] C. R. Laing, W. Troy, “Two-bump solutions of Amari-type models of neuronal pattern formation”, Physica D., 178 (2003), 190–218 | DOI | MR | Zbl

[6] M. R. Owen, C. R. Laing, S. Coombes, “Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities”, New J. Phys., 9 (2007), 378 | DOI | MR

[7] P. Blomquist, J. Wyller, G. T. Einevoll, “Localized activity patterns in two-population neuronal networks”, Physica D., 206 (2005), 180–212 | DOI | MR | Zbl

[8] A. Oleynik, A. Ponosov, J. Wyller, “On the properties of nonlinear nonlocal operators arising in neural field models”, J. Math. Anal. Appl., 398 (2013), 335–351 | DOI | MR | Zbl

[9] S. Coombes, M. R. Owen, “Evans functions for integral neural field equations with Heaviside firing rate function”, SIAM J. Appl. Dyn. Syst., 4 (2004), 574–600 | DOI | MR | Zbl

[10] E. O. Burlakov, M. A. Nasonkina, “On the connection of continuous and discontinuous models of neural fields with microstructure: I. General theory”, Tambov University Reports. Series Natural and Technical Sciences, 23:121 (2018), 17–30 (In Russian)

[11] E. O. Burlakov, I. N. Malkov, “On connection of continuous and discontinuous models of neuron fields with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)”, Russian Universities Reports. Mathematics, 25:129 (2020), 6–17 (In Russian) | Zbl

[12] E. S. Zhukovskiy, “Volterra inequalities in function spaces”, Sb. Math., 195:9 (2004), 1235–1251 | DOI | MR | MR | Zbl

[13] E. S. Zhukovskiy, “On Ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | MR | MR | Zbl

[14] E. O. Burlakov, E. S. Zhukovskiy, “On absrtact Volterra equations in partially ordered spaces and their applications”, Mathematical Analysis With Applications, International Conference in Honor of the 90th Birthday of Constantin Corduneanu. CONCORD-90 (Ekaterinburg, Russia, July 2018), Springer Proceedings in Mathematics Statistics, 318, eds. S. Pinelas, A. Kim, V. Vlasov, Springer, Switzerland, 2020, 3–11 | DOI | MR | Zbl

[15] S. Benarab, Z. T. Zhukovskaya, E. S. Zhukovskiy, S. E. Zhukovskiy, “Functional and differential inequalities and their applications to control problems”, Differential Equations, 56:11 (2020), 1440–1451 | DOI | MR | Zbl

[16] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, 5th ed., Fizmatlit Publ., Moscow, 2019 (In Russian) | MR

[17] A. V. Arutyunov., E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl

[18] M. A. Krasnosel'skiy, P. P. Zabreiko, Geometric Methods of Nonlinear Analysis, Nauka Publ., Moscow, 1975 (In Russian)

[19] L. A. Lyusternik, V. I. Sobolev, Short Course in Functional Analysis, High School, Moscow, 1982 (In Russian) | MR

[20] E. S. Zhukovskiy, “Continuous dependence on parameters of solutions to Volterra's equations”, Sb. Math., 197:10 (2006), 1435–1457 | DOI | MR | Zbl