Mots-clés : existence of solution
@article{VTAMU_2022_27_139_a5,
author = {A. S. Lanina and E. A. Pluzhnikova},
title = {On properties of solutions to differential systems modeling the electrical activity of the brain},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {270--283},
year = {2022},
volume = {27},
number = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/}
}
TY - JOUR AU - A. S. Lanina AU - E. A. Pluzhnikova TI - On properties of solutions to differential systems modeling the electrical activity of the brain JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 270 EP - 283 VL - 27 IS - 139 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/ LA - ru ID - VTAMU_2022_27_139_a5 ER -
%0 Journal Article %A A. S. Lanina %A E. A. Pluzhnikova %T On properties of solutions to differential systems modeling the electrical activity of the brain %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 270-283 %V 27 %N 139 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/ %G ru %F VTAMU_2022_27_139_a5
A. S. Lanina; E. A. Pluzhnikova. On properties of solutions to differential systems modeling the electrical activity of the brain. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 270-283. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a5/
[1] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties”, Proc. Nat. Acad. Sci., 79 (1982), 2554–2558 | DOI | MR | Zbl
[2] V. L. Bykov, Cytology and General Histology, Sothis, St. Petersburg, 2018 (In Russian)
[3] P. Van den Driesche, X. Zou, “Global attractivity in delayed Hopfield neural network models”, SIAM J. Appl. Math., 58 (1998), 1878–1890 | DOI | MR | Zbl
[4] A. S. Lanina, E. A. Pluzhnikova, “On one model of electrical activity of the brain”, Modeling and Optimization of Complex Systems MOCS-2022, Abstracts of the International School of Young Scientists (Suzdal, June 30 – July 5), Arkaim Publ., Vladimir, 2022, 31–32 (In Russian)
[5] C. R. Laing, W. Troy, “Two-bump solutions of Amari-type models of neuronal pattern formation”, Physica D., 178 (2003), 190–218 | DOI | MR | Zbl
[6] M. R. Owen, C. R. Laing, S. Coombes, “Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities”, New J. Phys., 9 (2007), 378 | DOI | MR
[7] P. Blomquist, J. Wyller, G. T. Einevoll, “Localized activity patterns in two-population neuronal networks”, Physica D., 206 (2005), 180–212 | DOI | MR | Zbl
[8] A. Oleynik, A. Ponosov, J. Wyller, “On the properties of nonlinear nonlocal operators arising in neural field models”, J. Math. Anal. Appl., 398 (2013), 335–351 | DOI | MR | Zbl
[9] S. Coombes, M. R. Owen, “Evans functions for integral neural field equations with Heaviside firing rate function”, SIAM J. Appl. Dyn. Syst., 4 (2004), 574–600 | DOI | MR | Zbl
[10] E. O. Burlakov, M. A. Nasonkina, “On the connection of continuous and discontinuous models of neural fields with microstructure: I. General theory”, Tambov University Reports. Series Natural and Technical Sciences, 23:121 (2018), 17–30 (In Russian)
[11] E. O. Burlakov, I. N. Malkov, “On connection of continuous and discontinuous models of neuron fields with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)”, Russian Universities Reports. Mathematics, 25:129 (2020), 6–17 (In Russian) | Zbl
[12] E. S. Zhukovskiy, “Volterra inequalities in function spaces”, Sb. Math., 195:9 (2004), 1235–1251 | DOI | MR | MR | Zbl
[13] E. S. Zhukovskiy, “On Ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | MR | MR | Zbl
[14] E. O. Burlakov, E. S. Zhukovskiy, “On absrtact Volterra equations in partially ordered spaces and their applications”, Mathematical Analysis With Applications, International Conference in Honor of the 90th Birthday of Constantin Corduneanu. CONCORD-90 (Ekaterinburg, Russia, July 2018), Springer Proceedings in Mathematics Statistics, 318, eds. S. Pinelas, A. Kim, V. Vlasov, Springer, Switzerland, 2020, 3–11 | DOI | MR | Zbl
[15] S. Benarab, Z. T. Zhukovskaya, E. S. Zhukovskiy, S. E. Zhukovskiy, “Functional and differential inequalities and their applications to control problems”, Differential Equations, 56:11 (2020), 1440–1451 | DOI | MR | Zbl
[16] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, 5th ed., Fizmatlit Publ., Moscow, 2019 (In Russian) | MR
[17] A. V. Arutyunov., E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl
[18] M. A. Krasnosel'skiy, P. P. Zabreiko, Geometric Methods of Nonlinear Analysis, Nauka Publ., Moscow, 1975 (In Russian)
[19] L. A. Lyusternik, V. I. Sobolev, Short Course in Functional Analysis, High School, Moscow, 1982 (In Russian) | MR
[20] E. S. Zhukovskiy, “Continuous dependence on parameters of solutions to Volterra's equations”, Sb. Math., 197:10 (2006), 1435–1457 | DOI | MR | Zbl