Mots-clés : distance
@article{VTAMU_2022_27_139_a3,
author = {T. V. Zhukovskaya and W. Merchela},
title = {On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {247--260},
year = {2022},
volume = {27},
number = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/}
}
TY - JOUR AU - T. V. Zhukovskaya AU - W. Merchela TI - On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 247 EP - 260 VL - 27 IS - 139 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/ LA - ru ID - VTAMU_2022_27_139_a3 ER -
%0 Journal Article %A T. V. Zhukovskaya %A W. Merchela %T On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 247-260 %V 27 %N 139 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/ %G ru %F VTAMU_2022_27_139_a3
T. V. Zhukovskaya; W. Merchela. On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 247-260. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/
[1] G. M. Vainikko, “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhn. Ser. Mat. anal., 16, VINITI, M., 1979, 5–53 ; G. M. Vainikko, “Regular convergence of operators and approximate solution of equations”, Journal of Soviet Mathematics, 15:6 (1981), 675–705 | DOI | MR | Zbl
[2] Z. Artstein, “Continuous dependence of solutions of operator equations. I”, Trans. Amer. Math. Soc., 231:1 (1977), 143–166 | DOI | MR | Zbl
[3] E. S. Zhukovskii, “Nepreryvnaya zavisimost ot parametrov reshenii uravnenii Volterra”, Matem. sb., 197:10 (2006), 33–56
[4] A. V. Arutyunov, S. E. Zhukovskii, “O globalnoi razreshimosti nelineinykh uravnenii s parametrami”, Dokl. RAN. Matem., inform., prots. upr., 496 (2021), 68–72 | Zbl
[5] A. V. Arutyunov, S. E. Zhukovskii, “Globalnaya i polulokalnaya teoremy o neyavnoi i ob obratnoi funktsii v banakhovykh prostranstvakh”, Matem. sb., 213:1 (2022), 3–45 | MR
[6] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matematicheskie zametki, 86:2 (2009), 163–169 | Zbl
[7] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology and its Applications, 275 (2020) | MR
[8] E. S. Zhukovskii, V . Merchela, “O nakryvayuschikh otobrazheniyakh v obobschennykh metricheskikh prostranstvakh v issledovanii neyavnykh differentsialnykh uravnenii”, Ufimskii matemticheskii zhurnal, 12:4 (2020), 42–55 | Zbl
[9] E. S. Zhukovskii, V . Merchela, “Metod issledovaniya integralnykh uravnenii, ispolzuyuschii mnozhestvo nakryvaniya operatora Nemytskogo v prostranstvakh izmerimykh funktsii”, Differentsialnye uravneniya, 58:1 (2022), 93–104 | Zbl
[10] L. Narici, E. Beckenstein, Topological Vector Spaces, Monographs and textbooks in pure and applied mathematics, 296, 2nd ed., Taylor Francis Group, New York, 2011, 628 pp. | MR
[11] A. V. Arutyunov, A. V. Greshnov, “Teoriya $(q_1, q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN., 469:5 (2016), 527–531 | Zbl
[12] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | MR | Zbl
[13] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | MR | Zbl
[14] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology and its Applications, 221 (2017), 178–194 | DOI | MR | Zbl
[15] Z. T. Zhukovskaya, S. E. Zhukovskiy, R. Sengupta, “On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces”, Russian Universities Reports. Mathematics, 24:125 (2019), 33–38 (In Russian)
[16] W. Merchela, “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 65–73 (In Russian)
[17] T. V. Zhukovskaia, A. I. Shindiapin, W. Merchela, “On the coincidence points of the mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:4 (2020), 52–63 (In Russian)
[18] D. Doitchinov, “On completeness in quasi-metric spaces”, Topology and its Applications, 30:2 (1988), 127–148 | DOI | MR | Zbl
[19] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady Akademii nauk, 416:2 (2007), 151–155 | Zbl
[20] A. V. Arutyunov, “Tochki sovpadeniya dvukh otobrazhenii”, Funkts. analiz i ego pril., 48:1 (2014), 89–93 | MR | Zbl
[21] S. Benarab, E. S. Zhukovskiy, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (In Russian) | MR
[22] A. V. Arutyunov, Lectures on Convex and Multivalued Analysis, Fizmatlit Publ., Moscow, 2014 (In Russian)
[23] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Introduction to the Theory of Multivalued Mappings and Differential Inclusions, Librokom Publ., Moscow, 2011 (In Russian) | MR
[24] E. S. Zhukovskiy, W. Merchela, “On the continuous dependence on the parameter of the set of solutions of the operator equation”, Izv. IMI UdGU, 54 (2019), 27–37 (In Russian) | Zbl