On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 247-260

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of coincidence points of two mappings $\psi,\varphi$ acting from a metric space $(X,\rho)$ into a space $(Y,d)$ in which a distance $d$ has only one of the properties of the metric: $ d(y_1,y_2)=0$ $\Leftrightarrow$ $y_1=y_2,$ and is assumed to be neither symmetric nor satisfying the triangle inequality. The question of well-posedness of the equation $$\psi(x)=\varphi(x)$$ which determines the coincidence point, is investigated. It is shown that if $x=\xi$ is a solution to this equation, then for any sequence of $\alpha_i$-covering mappings $\psi_i :X\to Y$ and any sequence of $\beta_i$-Lipschitz mappings $\varphi_i :X\to Y,$ $\alpha_i> \beta_i \geq 0,$ in the case of convergence {${d(\varphi_i(\xi),\psi_i(\xi))\to 0}$}, equation $\psi_i(x)= \varphi_i(x)$ has, for any $i,$ a solution $x=\xi_i$ such that $\rho(\xi_i,\xi)\to 0.$ Further in the article, the dependence of the set $\mathrm{Coin}(t)$ of coincidence points of mappings $\psi(\cdot,t),\varphi(\cdot,t ):X\to Y$ on a parameter $t,$ an element of the topological space $T,$ is investigated. Assuming that the first of these mappings is $\alpha$-covering and the second one is $\beta$-Lipschitz, we obtain an assertion on upper semicontinuity, lower semicontinuity, and continuity of the set-valued mapping $\mathrm {Coin}:T\rightrightarrows X.$
Keywords: well-posedness of equation, continuous dependence on parameter, coincidence point of two mappings, covering mapping.
Mots-clés : distance
@article{VTAMU_2022_27_139_a3,
     author = {T. V. Zhukovskaya and W. Merchela},
     title = {On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {247--260},
     publisher = {mathdoc},
     volume = {27},
     number = {139},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - W. Merchela
TI  - On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 247
EP  - 260
VL  - 27
IS  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/
LA  - ru
ID  - VTAMU_2022_27_139_a3
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A W. Merchela
%T On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 247-260
%V 27
%N 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/
%G ru
%F VTAMU_2022_27_139_a3
T. V. Zhukovskaya; W. Merchela. On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 247-260. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/