On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 247-260
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of coincidence points of two mappings $\psi,\varphi$ acting from a metric space $(X,\rho)$ into a space $(Y,d)$ in which a distance $d$ has only one of the properties of the metric: $ d(y_1,y_2)=0$ $\Leftrightarrow$ $y_1=y_2,$ and is assumed to be neither symmetric nor satisfying the triangle inequality. The question of well-posedness of the equation $$\psi(x)=\varphi(x)$$ which determines the coincidence point, is investigated. It is shown that if $x=\xi$ is a solution to this equation, then for any sequence of $\alpha_i$-covering mappings $\psi_i :X\to Y$ and any sequence of $\beta_i$-Lipschitz mappings $\varphi_i :X\to Y,$ $\alpha_i> \beta_i \geq 0,$ in the case of convergence {${d(\varphi_i(\xi),\psi_i(\xi))\to 0}$}, equation $\psi_i(x)= \varphi_i(x)$ has, for any $i,$ a solution $x=\xi_i$ such that $\rho(\xi_i,\xi)\to 0.$ Further in the article, the dependence of the set $\mathrm{Coin}(t)$ of coincidence points of mappings $\psi(\cdot,t),\varphi(\cdot,t ):X\to Y$ on a parameter $t,$ an element of the topological space $T,$ is investigated. Assuming that the first of these mappings is $\alpha$-covering and the second one is $\beta$-Lipschitz, we obtain an assertion on upper semicontinuity, lower semicontinuity, and continuity of the set-valued mapping $\mathrm {Coin}:T\rightrightarrows X.$
Keywords: well-posedness of equation, continuous dependence on parameter, coincidence point of two mappings, covering mapping.
Mots-clés : distance
@article{VTAMU_2022_27_139_a3,
     author = {T. V. Zhukovskaya and W. Merchela},
     title = {On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {247--260},
     year = {2022},
     volume = {27},
     number = {139},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - W. Merchela
TI  - On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 247
EP  - 260
VL  - 27
IS  - 139
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/
LA  - ru
ID  - VTAMU_2022_27_139_a3
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A W. Merchela
%T On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 247-260
%V 27
%N 139
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/
%G ru
%F VTAMU_2022_27_139_a3
T. V. Zhukovskaya; W. Merchela. On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 247-260. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a3/

[1] G. M. Vainikko, “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhn. Ser. Mat. anal., 16, VINITI, M., 1979, 5–53 ; G. M. Vainikko, “Regular convergence of operators and approximate solution of equations”, Journal of Soviet Mathematics, 15:6 (1981), 675–705 | DOI | MR | Zbl

[2] Z. Artstein, “Continuous dependence of solutions of operator equations. I”, Trans. Amer. Math. Soc., 231:1 (1977), 143–166 | DOI | MR | Zbl

[3] E. S. Zhukovskii, “Nepreryvnaya zavisimost ot parametrov reshenii uravnenii Volterra”, Matem. sb., 197:10 (2006), 33–56

[4] A. V. Arutyunov, S. E. Zhukovskii, “O globalnoi razreshimosti nelineinykh uravnenii s parametrami”, Dokl. RAN. Matem., inform., prots. upr., 496 (2021), 68–72 | Zbl

[5] A. V. Arutyunov, S. E. Zhukovskii, “Globalnaya i polulokalnaya teoremy o neyavnoi i ob obratnoi funktsii v banakhovykh prostranstvakh”, Matem. sb., 213:1 (2022), 3–45 | MR

[6] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matematicheskie zametki, 86:2 (2009), 163–169 | Zbl

[7] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology and its Applications, 275 (2020) | MR

[8] E. S. Zhukovskii, V . Merchela, “O nakryvayuschikh otobrazheniyakh v obobschennykh metricheskikh prostranstvakh v issledovanii neyavnykh differentsialnykh uravnenii”, Ufimskii matemticheskii zhurnal, 12:4 (2020), 42–55 | Zbl

[9] E. S. Zhukovskii, V . Merchela, “Metod issledovaniya integralnykh uravnenii, ispolzuyuschii mnozhestvo nakryvaniya operatora Nemytskogo v prostranstvakh izmerimykh funktsii”, Differentsialnye uravneniya, 58:1 (2022), 93–104 | Zbl

[10] L. Narici, E. Beckenstein, Topological Vector Spaces, Monographs and textbooks in pure and applied mathematics, 296, 2nd ed., Taylor Francis Group, New York, 2011, 628 pp. | MR

[11] A. V. Arutyunov, A. V. Greshnov, “Teoriya $(q_1, q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN., 469:5 (2016), 527–531 | Zbl

[12] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | MR | Zbl

[13] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | MR | Zbl

[14] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology and its Applications, 221 (2017), 178–194 | DOI | MR | Zbl

[15] Z. T. Zhukovskaya, S. E. Zhukovskiy, R. Sengupta, “On exact triangle inequalities in $(q_1,q_2)$-quasimetric spaces”, Russian Universities Reports. Mathematics, 24:125 (2019), 33–38 (In Russian)

[16] W. Merchela, “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 65–73 (In Russian)

[17] T. V. Zhukovskaia, A. I. Shindiapin, W. Merchela, “On the coincidence points of the mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:4 (2020), 52–63 (In Russian)

[18] D. Doitchinov, “On completeness in quasi-metric spaces”, Topology and its Applications, 30:2 (1988), 127–148 | DOI | MR | Zbl

[19] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady Akademii nauk, 416:2 (2007), 151–155 | Zbl

[20] A. V. Arutyunov, “Tochki sovpadeniya dvukh otobrazhenii”, Funkts. analiz i ego pril., 48:1 (2014), 89–93 | MR | Zbl

[21] S. Benarab, E. S. Zhukovskiy, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (In Russian) | MR

[22] A. V. Arutyunov, Lectures on Convex and Multivalued Analysis, Fizmatlit Publ., Moscow, 2014 (In Russian)

[23] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Introduction to the Theory of Multivalued Mappings and Differential Inclusions, Librokom Publ., Moscow, 2011 (In Russian) | MR

[24] E. S. Zhukovskiy, W. Merchela, “On the continuous dependence on the parameter of the set of solutions of the operator equation”, Izv. IMI UdGU, 54 (2019), 27–37 (In Russian) | Zbl