Keywords: Bessel operator, existence and uniqueness of a solution to a boundary value problem.
@article{VTAMU_2022_27_139_a2,
author = {I. B. Garipov and R. M. Mavlyaviev},
title = {Non-local problem with an integral condition for a parabolic equation with a {Bessel} operator},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {231--246},
year = {2022},
volume = {27},
number = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a2/}
}
TY - JOUR AU - I. B. Garipov AU - R. M. Mavlyaviev TI - Non-local problem with an integral condition for a parabolic equation with a Bessel operator JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 231 EP - 246 VL - 27 IS - 139 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a2/ LA - ru ID - VTAMU_2022_27_139_a2 ER -
%0 Journal Article %A I. B. Garipov %A R. M. Mavlyaviev %T Non-local problem with an integral condition for a parabolic equation with a Bessel operator %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 231-246 %V 27 %N 139 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a2/ %G ru %F VTAMU_2022_27_139_a2
I. B. Garipov; R. M. Mavlyaviev. Non-local problem with an integral condition for a parabolic equation with a Bessel operator. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 231-246. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a2/
[1] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | DOI | MR
[2] N. I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (In Russian)
[3] A. A. Samarskii, “Some problems of the theory of differential equations”, Differ. Uravn., 16:11 (1980), 1925–1935 (In Russian)
[4] A. M. Nakhushev, “An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water”, Differ. Uravn., 18:1 (1982), 72–81 (In Russian) | MR | Zbl
[5] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR
[6] N. J. Yurchuk, “A mixed problem with an integral condition for some parabolic equations”, Differ. Uravn., 22:12 (1986), 2117–2126 (In Russian) | MR | Zbl
[7] N. E. Benuar, N. J. Yurchuk, “A mixed problem with an integral condition for parabolic equations with a Bessel operator”, Differ. Equ., 27:12 (1991), 1482–1487 | MR | Zbl
[8] L. A. Muravei, A. V. Filinovskii, “A parabolic boundary value problem”, Dokl. Math., 43:2 (1991), 334–338 | MR | Zbl
[9] L. A. Muravei, A. V. Filinovskii, “On a problem with nonlocal boundary condition for a parabolic equation”, Sb. Math., 74:1 (1993), 219–249 | DOI | MR | Zbl | Zbl
[10] A. I. Kozhanov, “On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 30 (2004), 63–69 (In Russian)
[11] A. Bouziani, “Mixed problem with boundary integral conditions for a certain parabolic equation”, Journal of Applied Mathematics and Stochastic Analysis, 9:3 (1996), 323–330 | DOI | MR | Zbl
[12] S. Mesloub, A. Bouziani, “Mixed problem with a weighted integral condition for a parabolic equation with the Bessel operator”, Journal of Applied Mathematics and Stochastic Analysis, 15:3 (2002), 277–286 | DOI | MR
[13] A. Bouziani, T. E. Oussaeif, L. Ben Aoua, “A mixed problem with an integral two-space-variables condition for parabolic equation with the Bessel operator”, Journal of Mathematics, 2013 (2013), 1–8 | MR
[14] L. S. Pulkina, “A mixed problem with integral condition for the hyperbolic equation”, Math. Notes, 74:3 (2003), 411–421 | DOI | MR | Zbl
[15] L. S. Pul'kina, “Boundary value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI | MR | Zbl
[16] L. S. Pul'kina, “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Math. (Iz. VUZ), 56:10 (2012), 26–37 | DOI | MR | Zbl
[17] S. A. Beilin, “On a nonlocal problem with an integral condition”, Mat. Zamet. YAGU, 11:2 (2004), 22–29 (In Russian) | Zbl
[18] N. V. Zaitseva, Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator, Moscow University Press, Moscow, 2021, 120 pp. (In Russian)
[19] K. B. Sabitov, “Boundary value problem for a parabolic-hyperbolic equation with a nonlocal integral condition”, Differential Equations, 46:10 (2010), 1472–1481 | DOI | MR | Zbl
[20] K. B. Sabitov, “Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain”, Math. Notes, 89:4 (2011), 562–567 | DOI | MR | Zbl
[21] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, New York, 1944, 799 pp. | MR | Zbl
[22] V. Y. Arsenin, Methods of Mathematical Physics and Special Functions, Nauka Publ., Moscow, 1984, 384 pp. (In Russian) | MR
[23] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Partial Differential Equations of Mathematical Physics, Vysshaya Shkola Publ., Moscow, 1970, 712 pp. (In Russian)
[24] G. P. Tolstov, Fourier Series, Dover, New York, 1976, 352 pp. | MR | MR | Zbl