Mots-clés : Goursat problem
@article{VTAMU_2022_27_139_a1,
author = {A. V. Bogatov and A. V. Gilev and L. S. Pulkina},
title = {A problem with a non-local condition for a fourth-order equation with multiple characteristics},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {214--230},
year = {2022},
volume = {27},
number = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a1/}
}
TY - JOUR AU - A. V. Bogatov AU - A. V. Gilev AU - L. S. Pulkina TI - A problem with a non-local condition for a fourth-order equation with multiple characteristics JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 214 EP - 230 VL - 27 IS - 139 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a1/ LA - ru ID - VTAMU_2022_27_139_a1 ER -
%0 Journal Article %A A. V. Bogatov %A A. V. Gilev %A L. S. Pulkina %T A problem with a non-local condition for a fourth-order equation with multiple characteristics %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 214-230 %V 27 %N 139 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a1/ %G ru %F VTAMU_2022_27_139_a1
A. V. Bogatov; A. V. Gilev; L. S. Pulkina. A problem with a non-local condition for a fourth-order equation with multiple characteristics. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 214-230. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a1/
[1] G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, London, 1974 | MR | Zbl
[2] J. S. Rao, Advanced Theory of Vibration, Wiley, New York, 1992
[3] A. Favini, S. A. Zagrebina, G. A. Sviridyuk, “Multipoint initial-final value problems for dynamical Sobolev-type equations in the space of noises”, EJDE, 2018:128 (2018), 1–10 | MR
[4] A. A. Zamyshlyaeva, A. V. Yuzeeva, “The initial-finish value problem for the Boussinesq–Löve equation”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5, 23–31 (In Russian) | Zbl
[5] Ya. T. Megraliev, F. H. Alizade, “An inverse problem for a fourth-order Boussinesq equation with non-conjugate boundary and integral overdetermination conditions”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 2, 17–36 (In Russian)
[6] G. V. Namsaraeva, “Linear inverse problems for some analogues of the Boussinesq equation”, Mathematical Notes of NEFU, 21:2 (2014), 47–59 (In Russian) | Zbl
[7] L. Pulkina, “Solution to nonlocal problems of pseudohyperbolic equations”, EJDE, 2014:116 (2014), 1–49 | MR
[8] L. S. Pulkina, A. B. Beylin, “Nonlocal approach to problems on longitudinal vibration in a short bar”, EJDE, 2019:29 (2019), 1–9 | MR
[9] A. A. Alsykova, “Nonlocal problems with integral conditions for Boussinesq equation”, Mathematical Notes of NEFU, 23:1 (2016), 3–11 (In Russian) | Zbl
[10] N. S. Popov, “On the solvability of boundary value problems for multidimensional pseudohyperbolic equations with a nonlocal integral boundary condition”, Mathematical Notes of NEFU, 21:2 (2014), 69–80 (In Russian) | Zbl
[11] Z. P. Ba$\check{z}$ant, M. Jir$\acute{a}$sek, “Nonlocal Integral Formulation of Plasticity And Damage: Survey of Progress”, American Society of Civil Engineers. Journal of Engineering Mechanics, 128:11 (2002), 1119–1149 | DOI
[12] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR
[13] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR
[14] N. I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (In Russian) | MR | Zbl
[15] A. A. Kerefov, M. Kh. Shkhanukov–Lafishev, R. S. Kuliev, “Boundary value problems for the loaded heat equation with nonlocal Steklov type conditions”, Nonclassical Equations of Mathematical Physics, Proceedings of the Seminar Dedicated to the 60th Birth Anniversary of Professor V. N. Vragov (Novosibirsk, October 3-5, 2005), Sobolev Institute of Mathematics, Novosibirsk, 2005, 152–159 (In Russian) | MR | Zbl
[16] A. I. Kozhanov, “On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation”, Differ. Equ., 40:6 (2004), 815–826 | DOI | MR | Zbl
[17] N. I. Ivanchov, “Boundary value problems for a parabolic equation with integral conditions”, Differ. Equ., 40:4 (2004), 591–609 | DOI | MR | Zbl
[18] J. R. Cannon, J. van der Hoek, “The classical solution of the one-dimensional two-phase stefan problem with energy specification”, Annali di Matematica Pura ed Applicata, 130:1 (1982), 385–398 | DOI | MR | Zbl
[19] J. R. Cannon, Y. Lin, “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Problems, 4:1 (1988), 35–45 | DOI | MR | Zbl
[20] V. L. Kamynin, “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Math. Notes, 94:2 (2013), 205–213 | DOI | MR | Zbl
[21] V. I. Zhegalov, A. N. Mironov, E. A. Utkina, Equations with Dominant Partial Derivative, Kazan (Volga Region) Federal University, Kazan, 2014, 385 pp. (In Russian)
[22] V. I. Zhegalov, “On a proplem for generalized Boussinesq–Love equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019), 771–776 (In Russian) | Zbl
[23] E. A. Utkina, “On uniqueness of solution to a problems with normal derivatives in boundary conditions for the Boussinesq–Love equation”, Russian Math. (Iz. VUZ), 61:7 (2017), 58–63 | DOI | MR | Zbl
[24] L. S. Pul’kina, “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI | MR | Zbl
[25] A. I. Kozhanov, L. S. Pul’kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | MR | Zbl
[26] A. I. Kozhanov, A. V. Dyuzheva, “Non-local problems with integral displacement for high-order parabolic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 36 (2021), 14–28 (In Russian) | MR | Zbl
[27] A. I. Kozhanov, A. V. Dyuzheva, “The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 423–434 (In Russian) | Zbl
[28] L. Gording, The Cauchy Problem for Hyperbolic Equations, Foreign Literature Publishing House, Moscow, 1961 (In Russian)