Antiperiodic boundary value problem for an implicit ordinary differential equation
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 205-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is devoted to the investigation of the antiperiodic boundary value problem for an implicit nonlinear ordinary differential equation
$$f(t,x,\dot x)=0, \quad x(0)+x(\tau)=0.$$
We assume that the mapping $f:\mathbb{R}\times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^k$ defining the equation under consideration is smooth and satisfies the condition of uniform nondegeneracy of the first derivative
$$
  \inf \bigl\{ {\rm cov} f'_v (t,x,v):\,
  (t,x,v)\in \mathbb{R}\times \mathbb{R}^n \times \mathbb{R}^n \bigr\}>0.
$$
Here ${\rm cov} A$ is the Banach constant of the linear operator $A.$
The assumption of uniform non-degeneracy holds, in particular, for the mapping $f$ defining an explicit ordinary differential equation.
For implicit equations, sufficient conditions for the existence of a solution to an antiperiodic boundary value problem are obtained, and estimates for solutions are found.
Corollaries for normal ordinary differential equations are formulated.
To prove the main result, the original implicit equation is reduced to an explicit differential equation by applying a nonlocal implicit function theorem.
Then we prove an auxiliary assertion on the solvability of the equation $x+\psi(x)=0,$ which is an analog of Brouwer's fixed point theorem.
It is shown that the mapping $\psi,$ that assigns the value of the solution of the Cauchy problem at the point $\tau$ to an arbitrary initial point $x_0,$ is well defined and satisfies the assumptions of the auxiliary statement. This reasoning completes the proof of the existence of a solution to the boundary value problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
antiperiodic boundary value problem, implicit ordinary differential equation, implicit function theorem.
                    
                  
                
                
                @article{VTAMU_2022_27_139_a0,
     author = {A. V. Arutyunov and Z. T. Zhukovskaya and S. E. Zhukovskiy},
     title = {Antiperiodic boundary value problem for an implicit ordinary differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {205--213},
     publisher = {mathdoc},
     volume = {27},
     number = {139},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a0/}
}
                      
                      
                    TY - JOUR AU - A. V. Arutyunov AU - Z. T. Zhukovskaya AU - S. E. Zhukovskiy TI - Antiperiodic boundary value problem for an implicit ordinary differential equation JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 205 EP - 213 VL - 27 IS - 139 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a0/ LA - ru ID - VTAMU_2022_27_139_a0 ER -
%0 Journal Article %A A. V. Arutyunov %A Z. T. Zhukovskaya %A S. E. Zhukovskiy %T Antiperiodic boundary value problem for an implicit ordinary differential equation %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 205-213 %V 27 %N 139 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a0/ %G ru %F VTAMU_2022_27_139_a0
A. V. Arutyunov; Z. T. Zhukovskaya; S. E. Zhukovskiy. Antiperiodic boundary value problem for an implicit ordinary differential equation. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 139, pp. 205-213. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_139_a0/
