Properties of one higher order matrix-differential operator
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 175-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers a linear matrix-differential operator of the $n$-th order of the form $\mathbb{A}^n.$ For it and for the operator $(\tilde{\mathbb{A}}^{-1})^n,$ an analytical expression is derived, for which an operator analog of the Newton binomial is obtained. A lemma on the solution of a linear equation is given. It is used in the study of the abstract Cauchy problem for an algebro-differential equation in a Banach space with the cube of the operator $A$ at the highest derivative. The operator $A$ has the property of having $0$ as a normal eigenvalue. Conditions for the existence and uniqueness of the solution are determined; the solution is found, for which the method of cascade splitting of the equation and conditions into the corresponding equations and conditions in subspaces of lower dimensions is used. As an application, the results obtained for $n=3$ are used in solving a mixed problem for a fourth-order partial differential equation. These equations include the generalized shallow water wave equation and the generalized Liouville equation.
Keywords: linear matrix-differential operator, higher order, $0$-normal eigenvalue, algebrodifferential equation, Banach space, fourth order partial-differential equation.
@article{VTAMU_2022_27_138_a5,
     author = {V. I. Uskov},
     title = {Properties of one higher order matrix-differential operator},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {175--182},
     year = {2022},
     volume = {27},
     number = {138},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a5/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Properties of one higher order matrix-differential operator
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 175
EP  - 182
VL  - 27
IS  - 138
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a5/
LA  - ru
ID  - VTAMU_2022_27_138_a5
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Properties of one higher order matrix-differential operator
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 175-182
%V 27
%N 138
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a5/
%G ru
%F VTAMU_2022_27_138_a5
V. I. Uskov. Properties of one higher order matrix-differential operator. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 175-182. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a5/

[1] S. P. Zubova, E. V. Raetskaya, V. I. Uskov, “Degeneracy property of a matrix-differential operator and applications”, Journal of Mathematical Sciences, 255:5 (2021), 640–652 | DOI | MR | Zbl

[2] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman$\slash$CRC Press, Boca Raton–London–New York, 2004 | MR | Zbl

[3] T. D. Asylbekov, M. K Chamashev, “Coefficient inverse problem for a linear partial differential equation of the fourth order”, Bulletin of the Tomsk Polytechnic University, 317:2 (2010), 22–25 (In Russian)

[4] N. H. Ibragimov, “A new Conversation laws theorem”, Journal of Mathematical Analysis, 333:1 (2007), 311–328 | DOI | MR | Zbl

[5] I. V. Rahmelevich, “On solutions of a multidimensional differential equation of arbitrary order with mixed highest partial derivative and power nonlinearities”, Vladikavkaz Mathematical Journal, 18:4 (2016), 41–49 (In Russian) | MR | Zbl

[6] Ya. A. Afanasova, “Multinomial identity and its applications”, Classical and Applied Aspects of Successive Mathematical Training at the University: Historical and Modern View of Young Scientists and Applicants for Higher Education, Materials of the All-Ukrainian Scientific and Practical Conference (Kharkiv, 2021), Abstracts, 2021, 194–197 (In Russian)

[7] V. I. Uskov, “Solution of a problem for a system of third order partial differential equations”, Russian University Reports. Mathematics, 26:133 (2021), 68–76 (In Russian) | Zbl