and formulas for calculating indices are given. The method developed by R. V. Duduchava [Duduchava R. On multidimensional singular integral operators. I: The half-space case; II: The case of compact manifolds // J. Operator Theory, 1984, v. 11, 41–76 (I); 199–214 (II)]. In this case, the study of the Noetherian properties of operators is reduced to the factorization of the corresponding matrix-functions and finding their partial indices.
@article{VTAMU_2022_27_138_a4,
author = {J. M. Odinabekov},
title = {On the noethericity conditions and the index of some two-dimensional singular integral operators},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {164--174},
year = {2022},
volume = {27},
number = {138},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/}
}
TY - JOUR AU - J. M. Odinabekov TI - On the noethericity conditions and the index of some two-dimensional singular integral operators JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 164 EP - 174 VL - 27 IS - 138 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/ LA - ru ID - VTAMU_2022_27_138_a4 ER -
%0 Journal Article %A J. M. Odinabekov %T On the noethericity conditions and the index of some two-dimensional singular integral operators %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 164-174 %V 27 %N 138 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/ %G ru %F VTAMU_2022_27_138_a4
J. M. Odinabekov. On the noethericity conditions and the index of some two-dimensional singular integral operators. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 164-174. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/
[1] S. G. Mikhlin, Applications of Integral Equations to Some Problems of Mechanics, Mathematical Physics and Technology, OGIZ Publ., Moscow, 1947, 304 pp. (In Russian) | MR
[2] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, FIZMATGIZ Publ., Moscow, 1962, 256 pp. (In Russian)
[3] S. G. Mikhlin, Lectures on Linear Integral Equations, FIZMATGIZ Publ., Moscow, 1959, 232 pp. (In Russian)
[4] I. N. Vekua, New Methods for Solving Elliptic Equations, OGIZ Publ., Leningrad, 1948, 295 pp. (In Russian) | MR
[5] N. I. Muskhilishvili, Singular Integral Equations, Nauka Publ., Moscow, 1968, 511 pp. (In Russian) | MR
[6] G. Dzhangibekov, D. M. Odinabekov, G. Kh. Khudzhanazarova, “Ob usloviyakh neterovosti i indekse odnogo klassa singulyarnykh operatorov po ogranichennoi odnosvyaznoi oblasti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2019, no. 2, 9–14 | Zbl
[7] K. Kh. Boimatov, G. Dzhangibekov, “Ob odnom singulyarnom integralnom operatore”, UMN, 43:3(261) (1988), 171–172 | MR
[8] A. D. Juraev, The Method of Singular Integral Equations, Nauka Publ., Moscow, 1987 (In Russian)
[9] G. Dzhangibekov, “O neterovosti i indekse odnogo klassa dvumernykh singulyarnykh integralnykh uravnenii s razryvnymi koeffitsientami”, Dokl. AN SSSR, 300:2 (1988), 272–276 | Zbl
[10] G. Dzhangibekov, “O neterovosti i indekse nekotorykh dvumernykh singulyarnykh integralnykh operatorov”, Dokl. AN SSSR, 308:5 (1989), 1037–1041 ; G. Dzhangibekov, “On the Noethericity and index of some two-dimensional singular integral operators”, Dokl. Math., 40:2 (1990), 394–399 | MR | MR | Zbl
[11] R. Duduchava, “On multidimensional singular integral operators. I: The half-space case”, Journal of Operator Theory, 11:1 (1984), 41–76 | MR | Zbl
[12] R. Duduchava, “On multidimensional singular integral operators. II: The case of compact manifolds”, Journal of Operator Theory, 11:2 (1984), 199–214 | MR | Zbl
[13] N. L. Vasilevskii, “Banakhovy algebry, porozhdennye dvumernymi integralnymi operatorami s yadrom Bergmana i kusochno-nepreryvnymi koeffitsientami, II”, Izv. vuzov. Matem., 1986, no. 3, 33–38 | Zbl