On the noethericity conditions and the index of some two-dimensional singular integral operators
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 164-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main problems in the theory of singular integral operators are the problems of boundedness, invertibility, Noethericity, and calculation of the index. The general theory of multidimensional singular integral operators over the entire space $E_n$ was constructed by S. G. Mikhlin. It is known that in the two-dimensional case, if the symbol of an operator does not vanish, then the Fredholm theory holds. For operators over a bounded domain, the boundary of this domain significantly affects the solvability of the corresponding operator equations. In this paper, we consider two-dimensional singular integral operators with continuous coefficients over a bounded domain. Such operators are used in many problems in the theory of partial differential equations. In this regard, it is of interest to establish criteria for the considered operators to be Noetherian in the form of explicit conditions on their coefficients. The paper establishes effective necessary and sufficient conditions for two-dimensional singular integral operators to be Noetherian in Lebesgue spaces $L_{p}(D)$ (considered over the field of real numbers), $1 and formulas for calculating indices are given. The method developed by R. V. Duduchava [Duduchava R. On multidimensional singular integral operators. I: The half-space case; II: The case of compact manifolds // J. Operator Theory, 1984, v. 11, 41–76 (I); 199–214 (II)]. In this case, the study of the Noetherian properties of operators is reduced to the factorization of the corresponding matrix-functions and finding their partial indices.
Keywords: singular integral operator, operator index, symbol operator, Noethericity operator.
@article{VTAMU_2022_27_138_a4,
     author = {J. M. Odinabekov},
     title = {On the noethericity conditions and the index of some two-dimensional singular integral operators},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {164--174},
     year = {2022},
     volume = {27},
     number = {138},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/}
}
TY  - JOUR
AU  - J. M. Odinabekov
TI  - On the noethericity conditions and the index of some two-dimensional singular integral operators
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 164
EP  - 174
VL  - 27
IS  - 138
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/
LA  - ru
ID  - VTAMU_2022_27_138_a4
ER  - 
%0 Journal Article
%A J. M. Odinabekov
%T On the noethericity conditions and the index of some two-dimensional singular integral operators
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 164-174
%V 27
%N 138
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/
%G ru
%F VTAMU_2022_27_138_a4
J. M. Odinabekov. On the noethericity conditions and the index of some two-dimensional singular integral operators. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 164-174. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a4/

[1] S. G. Mikhlin, Applications of Integral Equations to Some Problems of Mechanics, Mathematical Physics and Technology, OGIZ Publ., Moscow, 1947, 304 pp. (In Russian) | MR

[2] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, FIZMATGIZ Publ., Moscow, 1962, 256 pp. (In Russian)

[3] S. G. Mikhlin, Lectures on Linear Integral Equations, FIZMATGIZ Publ., Moscow, 1959, 232 pp. (In Russian)

[4] I. N. Vekua, New Methods for Solving Elliptic Equations, OGIZ Publ., Leningrad, 1948, 295 pp. (In Russian) | MR

[5] N. I. Muskhilishvili, Singular Integral Equations, Nauka Publ., Moscow, 1968, 511 pp. (In Russian) | MR

[6] G. Dzhangibekov, D. M. Odinabekov, G. Kh. Khudzhanazarova, “Ob usloviyakh neterovosti i indekse odnogo klassa singulyarnykh operatorov po ogranichennoi odnosvyaznoi oblasti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2019, no. 2, 9–14 | Zbl

[7] K. Kh. Boimatov, G. Dzhangibekov, “Ob odnom singulyarnom integralnom operatore”, UMN, 43:3(261) (1988), 171–172 | MR

[8] A. D. Juraev, The Method of Singular Integral Equations, Nauka Publ., Moscow, 1987 (In Russian)

[9] G. Dzhangibekov, “O neterovosti i indekse odnogo klassa dvumernykh singulyarnykh integralnykh uravnenii s razryvnymi koeffitsientami”, Dokl. AN SSSR, 300:2 (1988), 272–276 | Zbl

[10] G. Dzhangibekov, “O neterovosti i indekse nekotorykh dvumernykh singulyarnykh integralnykh operatorov”, Dokl. AN SSSR, 308:5 (1989), 1037–1041 ; G. Dzhangibekov, “On the Noethericity and index of some two-dimensional singular integral operators”, Dokl. Math., 40:2 (1990), 394–399 | MR | MR | Zbl

[11] R. Duduchava, “On multidimensional singular integral operators. I: The half-space case”, Journal of Operator Theory, 11:1 (1984), 41–76 | MR | Zbl

[12] R. Duduchava, “On multidimensional singular integral operators. II: The case of compact manifolds”, Journal of Operator Theory, 11:2 (1984), 199–214 | MR | Zbl

[13] N. L. Vasilevskii, “Banakhovy algebry, porozhdennye dvumernymi integralnymi operatorami s yadrom Bergmana i kusochno-nepreryvnymi koeffitsientami, II”, Izv. vuzov. Matem., 1986, no. 3, 33–38 | Zbl