Inner product and Gegenbauer polynomials in Sobolev space
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 150-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the system of functions $G_{r,n}^{\alpha }(x)$ ($r\in\mathbb{N},$ $n=0,1,...$) which is orthogonal with respect to the Sobolev-type inner product on $(-1,1)$ and generated by orthogonal Gegenbauer polynomials. The main goal of this work is to study some properties related to the system $\{\varphi _{k,r}(x)\}_{k\geq 0}$ of the functions generated by the orthogonal system\linebreak $\{G_{r,n}^{\alpha }(x)\}$ of Gegenbauer functions. We study the conditions on a function $f(x)$ given in a generalized Gegenbauer orthogonal system for it to be expandable into a generalized mixed Fourier series of the form $$ f(x)\sim \sum_{k=0}^{r-1}f^{(k)}(-1)\frac{(x+1)^{k}}{k!}+\sum_{k=r}^{\infty }C_{r,k}^{\alpha }(f)\varphi _{r,k}^{\alpha }(x),$$ as well as the convergence of this Fourier series. The second result of this paper is the proof of a recurrence formula for the system $\{\varphi _{k,r}(x)\}_{k\geq 0}.$ We also discuss the asymptotic properties of these functions, and this represents the latter result of our contribution.
Keywords: inner product, Sobolev space, Gegenbauer polynomials.
@article{VTAMU_2022_27_138_a3,
     author = {M. A. Boudref},
     title = {Inner product and {Gegenbauer} polynomials in {Sobolev} space},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {150--163},
     year = {2022},
     volume = {27},
     number = {138},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a3/}
}
TY  - JOUR
AU  - M. A. Boudref
TI  - Inner product and Gegenbauer polynomials in Sobolev space
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 150
EP  - 163
VL  - 27
IS  - 138
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a3/
LA  - ru
ID  - VTAMU_2022_27_138_a3
ER  - 
%0 Journal Article
%A M. A. Boudref
%T Inner product and Gegenbauer polynomials in Sobolev space
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 150-163
%V 27
%N 138
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a3/
%G ru
%F VTAMU_2022_27_138_a3
M. A. Boudref. Inner product and Gegenbauer polynomials in Sobolev space. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 150-163. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a3/

[1] R. M. Gadzhimirzaev, “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. Anal. Issues Anal., 8(26):1 (2019), 32–46 | DOI | MR | Zbl

[2] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | MR | Zbl

[3] I. Sharapudinov, Mixed Series of Orthogonal Polynomials, Daghestan Sientific Centre Press, Makhachkala, 2004

[4] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | MR | Zbl

[5] I. I. Sharapudinov, “Sobolev orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212–244 | DOI | MR | Zbl

[6] I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sens, generated by Chebychev polynomials orthogonal on a mesh”, Russian Math. (Iz. VUZ), 61:8 (2017), 59–70 | DOI | MR | Zbl

[7] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, USA, 1964 | MR

[8] G. Szegö, Orthogonal Plynomials, v. 23, American Mathematical Society, Providence, Rhode Island, 1975 | MR

[9] A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics, Birkhăuser Veriag Basel, Springer Basel AG., 1988 | MR | Zbl