@article{VTAMU_2022_27_138_a3,
author = {M. A. Boudref},
title = {Inner product and {Gegenbauer} polynomials in {Sobolev} space},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {150--163},
year = {2022},
volume = {27},
number = {138},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a3/}
}
M. A. Boudref. Inner product and Gegenbauer polynomials in Sobolev space. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 150-163. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a3/
[1] R. M. Gadzhimirzaev, “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. Anal. Issues Anal., 8(26):1 (2019), 32–46 | DOI | MR | Zbl
[2] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | MR | Zbl
[3] I. Sharapudinov, Mixed Series of Orthogonal Polynomials, Daghestan Sientific Centre Press, Makhachkala, 2004
[4] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | MR | Zbl
[5] I. I. Sharapudinov, “Sobolev orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212–244 | DOI | MR | Zbl
[6] I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sens, generated by Chebychev polynomials orthogonal on a mesh”, Russian Math. (Iz. VUZ), 61:8 (2017), 59–70 | DOI | MR | Zbl
[7] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, USA, 1964 | MR
[8] G. Szegö, Orthogonal Plynomials, v. 23, American Mathematical Society, Providence, Rhode Island, 1975 | MR
[9] A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics, Birkhăuser Veriag Basel, Springer Basel AG., 1988 | MR | Zbl