@article{VTAMU_2022_27_138_a2,
author = {M. V. Balashov},
title = {Embedding of a homothete in a convex compactum: an algorithm and its convergence},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {143--149},
year = {2022},
volume = {27},
number = {138},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a2/}
}
TY - JOUR AU - M. V. Balashov TI - Embedding of a homothete in a convex compactum: an algorithm and its convergence JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 143 EP - 149 VL - 27 IS - 138 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a2/ LA - ru ID - VTAMU_2022_27_138_a2 ER -
M. V. Balashov. Embedding of a homothete in a convex compactum: an algorithm and its convergence. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 138, pp. 143-149. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_138_a2/
[1] L. Danzer, B. Grunbaum, V. Klee, Helly's Theorem and its Applications, Mir Publ., Moscow, 1968 (In Russian)
[2] M. Althoff, G. Frehse, A. Girard, “Set propagation techniques for reachability analysis”, Annual Review of Control, Robotics, and Autonomous Systems, 4:1 (2021), 369–395 | DOI
[3] B. T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987 | MR
[4] M. V. Balashov, E. S. Polovinkin, “$M$-strongly convex subsets and their generating sets”, Sb. Math., 191:1 (2000), 25–60 | DOI | MR | Zbl
[5] P. Cannarsa, H. Frankowska,, “Interior sphere property of attainable sets and time optimal control problems”, ESAIM: Control, Optimisation and Calculus of Variations, 12:2 (2006), 350–370 | DOI | MR | Zbl
[6] J. Bolte, Sh. Sabach, M. Teboulle, “Proximal alternating linearized minimization for nonconvex and nonsmooth problems”, Mathematical Programming, 146:1–2 (2014), 459–494 | DOI | MR | Zbl
[7] M. V. Balashov, A. A. Tremba, “Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds”, Optimization, 71:3 (2022), 711-735 | DOI | MR | Zbl
[8] G. E. Ivanov, V. V. Goncharov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations Research, Engineering, and Cyber Security, v. 113, Springer Optimization and Its Applications, eds. N. Daras, T. Rassias, Springer International Publishing, Cham, Switzerland, 2017, 259–297 | MR | Zbl