Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 80-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the stability conditions of a three-layer symmetric differential-difference scheme with a weight parameter in the class of functions summable on a network-like domain are obtained. To analyze the stability of the differential-difference system in the space of feasible solutions $H$, a composite norm is introduced that has the structure of a norm in the space $H^2=H\oplus H.$ Namely, for $Y=\{Y_1,Y_2\}\in H^2,$ $Y_\ell\in H$ ($\ell=1,2$), $\| Y\|^2_H=\| Y_1\|^2_{1,H}+\| Y_2\|^2_{2,H},$ where $\|\cdot\|^2_{1,H}$ $\|\cdot\|^2_{2,H}$ are some norms in $H.$ The use of such a norm in the description of the energy identity opens the way for constructing a priori estimates for weak solutions of the differential-difference system, convenient for practical testing in the case of specific differential-difference schemes. The results obtained can be used to analyze optimization problems that arise when modeling network-like transfer processes with the help of formalisms of differential-difference systems.
Keywords: multidimensional network-like domain, differential-difference system, stability of differential-difference scheme.
@article{VTAMU_2022_27_137_a5,
     author = {V. V. Provotorov and V. N. Hoang},
     title = {Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {80--94},
     year = {2022},
     volume = {27},
     number = {137},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/}
}
TY  - JOUR
AU  - V. V. Provotorov
AU  - V. N. Hoang
TI  - Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 80
EP  - 94
VL  - 27
IS  - 137
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/
LA  - ru
ID  - VTAMU_2022_27_137_a5
ER  - 
%0 Journal Article
%A V. V. Provotorov
%A V. N. Hoang
%T Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 80-94
%V 27
%N 137
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/
%G ru
%F VTAMU_2022_27_137_a5
V. V. Provotorov; V. N. Hoang. Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 80-94. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/

[1] V. N. Hoang, “Differential-difference boundary value problem for a parabolic system with distributed parameters on a graph”, Management Processes and Sustainability, 7:1 (2020), 127–132 (In Russian)

[2] V. V. Provotorov, S. M. Sergeev, V. N. Hoang, “Point control of differential-difference system with distributed parameters on the graph”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 (In English) | MR

[3] V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier-Stokes system in a netlike domain”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431–443 (In English) | MR

[4] M. A. Artemov, E. S. Baranovskii, A. P. Zhabko, V. V. Provotorov, “On a 3D model of non-isothermal flows in a pipeline network”, IOP Conference, Journal of Physics: Conference Series, 1203, IOP Publishing Ltd., 2019, Article ID 012094 | DOI

[5] E. S. Baranovskii, V. V. Provotorov, M. A. Artemov, A. P. Zhabko, “Non-isothermal creeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), Article ID 1300

[6] A. P. Zhabko, A. I. Shindyapin, V. V. Provotorov, “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 (In English) | MR

[7] A. S. Volkova, V. V. Provotorov, “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Math. (Iz. VUZ), 58:3 (2014), 1–13 | DOI | MR | Zbl

[8] A. A. Samarsky, Theory of Difference Schemes, Nauka Publ., Moscow, 1977, 656 pp. (In Russian)

[9] O. A. Ladyzhenskaya, Boundary-value Problems of Mathematical Physics, Nauka Publ., Moscow, 1973, 407 pp. (In Russian) | MR

[10] E. Rothe, “Thermal conductivity equations with non-constant coefficients”, Math. Ann., 1931, no. 104, 340–362 | DOI | MR | Zbl

[11] L. N. Borisoglebskaya, V. V. Provotorov, S. M. Sergeev, E. S. Kosinov, “Mathematical aspects of optimal control of transference processes in spatial networks”, IOP Conference, v. 573, Series: Materials Science and Engineering, IOP Publishing Ltd., 2019, Article ID 042025

[12] V. V. Provotorov, E. N. Provotorova, “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In English) | MR

[13] A. P. Zhabko, V. V. Provotorov, O. R. Balaban, “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied mathematics. Computer science. Control processes, 15:2 (2019), 187–198 (In English) | MR

[14] S. L. Podvalny, V. V. Provotorov, E. S. Podvalny, “The controllability of parabolic systems with delay and distributed parameters on the graph”, Procedia Computer Sciense, 103 (2017), 324–330 | DOI