@article{VTAMU_2022_27_137_a5,
author = {V. V. Provotorov and V. N. Hoang},
title = {Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {80--94},
year = {2022},
volume = {27},
number = {137},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/}
}
TY - JOUR AU - V. V. Provotorov AU - V. N. Hoang TI - Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 80 EP - 94 VL - 27 IS - 137 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/ LA - ru ID - VTAMU_2022_27_137_a5 ER -
%0 Journal Article %A V. V. Provotorov %A V. N. Hoang %T Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 80-94 %V 27 %N 137 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/ %G ru %F VTAMU_2022_27_137_a5
V. V. Provotorov; V. N. Hoang. Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 80-94. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a5/
[1] V. N. Hoang, “Differential-difference boundary value problem for a parabolic system with distributed parameters on a graph”, Management Processes and Sustainability, 7:1 (2020), 127–132 (In Russian)
[2] V. V. Provotorov, S. M. Sergeev, V. N. Hoang, “Point control of differential-difference system with distributed parameters on the graph”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 (In English) | MR
[3] V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier-Stokes system in a netlike domain”, Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431–443 (In English) | MR
[4] M. A. Artemov, E. S. Baranovskii, A. P. Zhabko, V. V. Provotorov, “On a 3D model of non-isothermal flows in a pipeline network”, IOP Conference, Journal of Physics: Conference Series, 1203, IOP Publishing Ltd., 2019, Article ID 012094 | DOI
[5] E. S. Baranovskii, V. V. Provotorov, M. A. Artemov, A. P. Zhabko, “Non-isothermal creeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), Article ID 1300
[6] A. P. Zhabko, A. I. Shindyapin, V. V. Provotorov, “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 (In English) | MR
[7] A. S. Volkova, V. V. Provotorov, “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Math. (Iz. VUZ), 58:3 (2014), 1–13 | DOI | MR | Zbl
[8] A. A. Samarsky, Theory of Difference Schemes, Nauka Publ., Moscow, 1977, 656 pp. (In Russian)
[9] O. A. Ladyzhenskaya, Boundary-value Problems of Mathematical Physics, Nauka Publ., Moscow, 1973, 407 pp. (In Russian) | MR
[10] E. Rothe, “Thermal conductivity equations with non-constant coefficients”, Math. Ann., 1931, no. 104, 340–362 | DOI | MR | Zbl
[11] L. N. Borisoglebskaya, V. V. Provotorov, S. M. Sergeev, E. S. Kosinov, “Mathematical aspects of optimal control of transference processes in spatial networks”, IOP Conference, v. 573, Series: Materials Science and Engineering, IOP Publishing Ltd., 2019, Article ID 042025
[12] V. V. Provotorov, E. N. Provotorova, “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In English) | MR
[13] A. P. Zhabko, V. V. Provotorov, O. R. Balaban, “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied mathematics. Computer science. Control processes, 15:2 (2019), 187–198 (In English) | MR
[14] S. L. Podvalny, V. V. Provotorov, E. S. Podvalny, “The controllability of parabolic systems with delay and distributed parameters on the graph”, Procedia Computer Sciense, 103 (2017), 324–330 | DOI