Spectral properties of an even-order differential operator with a discontinuous weight function
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 37-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article proposes a new method for studying differential operators with a discontinuous weight function. It is assumed that the potential of the operator is a piecewise smooth function on the segment of the operator definition. The conditions of «conjugation» at the point of discontinuity of the weight function are required. The spectral properties of a differential operator defined on a finite segment with separated boundary conditions are studied. The asymptotics of the fundamental system of solutions of the corresponding differential equation for large values of the spectral parameter is obtained. With the help of this asymptotics, the «conjugation» conditions of the differential operator in question are studied. The boundary conditions of the operator under study are investigated. As a result, we obtain an equation for the eigenvalues of the operator, which is an entire function. The indicator diagram of the eigenvalue equation, which is a regular polygon, is studied. In various sectors of the indicator diagram, the asymptotics of the eigenvalues of the investigated differential operator is found. The formula for the first regularized trace of this operator by using the found asymptotics of the eigenvalues by the Lidsky-Sadovnichy method is obtained. In the case of the passage to the limit, the resulting formula leads to the trace formula for the classical operator with a smooth potential and constant weight function.
Keywords: differential operator, weight function, spectral parameter, asymptotics of solutions, spectrum of an operator, regularized trace of an operator.
@article{VTAMU_2022_27_137_a3,
     author = {S. I. Mitrokhin},
     title = {Spectral properties of an even-order differential operator with a discontinuous weight function},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {37--57},
     year = {2022},
     volume = {27},
     number = {137},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Spectral properties of an even-order differential operator with a discontinuous weight function
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 37
EP  - 57
VL  - 27
IS  - 137
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/
LA  - ru
ID  - VTAMU_2022_27_137_a3
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Spectral properties of an even-order differential operator with a discontinuous weight function
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 37-57
%V 27
%N 137
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/
%G ru
%F VTAMU_2022_27_137_a3
S. I. Mitrokhin. Spectral properties of an even-order differential operator with a discontinuous weight function. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 37-57. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/

[1] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 528 pp.; M. A. Naimark, Linear Differential Operators, 2nd ed., Dover Publications, New-York, 2014, 528 pp. | MR

[2] V. B. Lidskii, V. A. Sadovnichii, “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Matematicheskii sbornik, 75(117):4 (1968), 558–566 | Zbl

[3] V. A. Yurko, “Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, Peoples' Friendship University of Russia, Moscow, 2017, 362–372 (In Russian)

[4] H. P. W. Gottlieb, “Iso-spectral Operators: Some Model Examples with Discontinuous Coefficients”, Journal of Math. Anal. and Appl., 1988, 123–137 | DOI | MR | Zbl

[5] V. A. Ilin, “O skhodimosti razlozhenii po sobstvennym funktsiyam v tochkakh razryva koeffitsientov differentsialnogo operatora”, Matematicheskie zametki, 22:5 (1977), 679–698 | MR

[6] V. A. Ilyin, “Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators”, Differ. Uravn., 22:12 (1986), 2059–2071 (In Russian) | MR

[7] V. D. Budaev, “The property of being an unconditional basis on a closed interval, for systems of eigen- and associated functions of a second-order operator with discontinuous coefficients”, Differ. Uravn., 23:6 (1987), 941–952 (In Russian) | MR

[8] S. I. Mitrokhin, “Spectral properties of differential operators with discontinuous coefficients”, Differ. Uravn., 28:3 (1992), 530–532 (In Russian) | MR | Zbl

[9] S. I. Mitrokhin, “On some spectral properties of second-order differential operators with a discontinuous weight function”, Dokl. Akad. Nauk, 356:1 (1997), 13–15 (In Russian) | MR | Zbl

[10] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matematicheskie zametki, 66:6 (1999), 897–912 | Zbl

[11] S. I. Mitrokhin, “Ob asimptotike sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka so znakoperemennoi vesovoi funktsiei”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2018, no. 6, 46–58 | MR | Zbl

[12] G. A. Aigunov, M. M. Gekhtman, “K voprosu o maksimalno vozmozhnoi skorosti rosta sistemy sobstvennykh funktsii operatora Shturma–Liuvillya s nepreryvnoi vesovoi funktsiei na konechnom otrezke”, UMN, 52:3(315) (1997), 161–162 | MR | Zbl

[13] A. P. Gurevich, A. P. Khromov, “Operatory differentsirovaniya pervogo i vtorogo poryadkov so znakoperemennoi vesovoi funktsiei”, Matematicheskie zametki, 56:1 (1994), 3–15 | MR | Zbl

[14] S. I. Mitrokhin, “Asimptotika sobstvennykh znachenii differentsialnogo operatora so znakoperemennoi vesovoi funktsiei”, Izvestiya vuzov. Matematika, 2018, no. 6, 31–47 | MR | Zbl

[15] S. I. Mitrokhin, “On the study of the spectral properties of differential operators with a smooth weight function”, Russian Universities Reports. Mathematics, 25:129 (2020), 25–47 (In Russian) | Zbl

[16] V. A. Vinokurov, V. A. Sadovnichii, “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izvestiya RAN. Seriya: Matematika, 64:4 (2000), 47–108 | MR | Zbl

[17] S. I. Mitrokhin, “O spektralnykh svoistvakh differentsialnogo operatora chetvertogo poryadka s summiruemymi koeffitsientami”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 270, MAIK «Nauka/Interperiodika», M., 2010, 188–197 | MR

[18] S. I. Mitrokhin, “Spektralnye svoistva semeistva differentsialnykh operatorov chetnogo poryadka s summiruemym potentsialom”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2017, no. 4, 3–15 | MR | Zbl

[19] S. I. Mitrokhin, “O spektralnykh svoistvakh differentsialnykh operatorov nechetnogo poryadka s summiruemym potentsialom”, Differentsialnye uravneniya, 47:12 (2011), 1808–1811 | MR | Zbl

[20] S. I. Mitrokhin, “Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 136–149 (In Russian) | MR

[21] R. Bellman, K. L. Cook, Differential-Difference Equations, Mir Publ., Moscow, 1967 (In Russian)

[22] V. A. Sadovnichii, “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matematicheskii sbornik, 72(114):2 (1967), 293–317 | Zbl

[23] V. A. Sadovnichii, Operator Theory, Drofa Publ., Moscow, 2001 (In Russian)