@article{VTAMU_2022_27_137_a3,
author = {S. I. Mitrokhin},
title = {Spectral properties of an even-order differential operator with a discontinuous weight function},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {37--57},
year = {2022},
volume = {27},
number = {137},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/}
}
TY - JOUR AU - S. I. Mitrokhin TI - Spectral properties of an even-order differential operator with a discontinuous weight function JO - Vestnik rossijskih universitetov. Matematika PY - 2022 SP - 37 EP - 57 VL - 27 IS - 137 UR - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/ LA - ru ID - VTAMU_2022_27_137_a3 ER -
%0 Journal Article %A S. I. Mitrokhin %T Spectral properties of an even-order differential operator with a discontinuous weight function %J Vestnik rossijskih universitetov. Matematika %D 2022 %P 37-57 %V 27 %N 137 %U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/ %G ru %F VTAMU_2022_27_137_a3
S. I. Mitrokhin. Spectral properties of an even-order differential operator with a discontinuous weight function. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 37-57. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a3/
[1] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 528 pp.; M. A. Naimark, Linear Differential Operators, 2nd ed., Dover Publications, New-York, 2014, 528 pp. | MR
[2] V. B. Lidskii, V. A. Sadovnichii, “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Matematicheskii sbornik, 75(117):4 (1968), 558–566 | Zbl
[3] V. A. Yurko, “Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, Peoples' Friendship University of Russia, Moscow, 2017, 362–372 (In Russian)
[4] H. P. W. Gottlieb, “Iso-spectral Operators: Some Model Examples with Discontinuous Coefficients”, Journal of Math. Anal. and Appl., 1988, 123–137 | DOI | MR | Zbl
[5] V. A. Ilin, “O skhodimosti razlozhenii po sobstvennym funktsiyam v tochkakh razryva koeffitsientov differentsialnogo operatora”, Matematicheskie zametki, 22:5 (1977), 679–698 | MR
[6] V. A. Ilyin, “Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators”, Differ. Uravn., 22:12 (1986), 2059–2071 (In Russian) | MR
[7] V. D. Budaev, “The property of being an unconditional basis on a closed interval, for systems of eigen- and associated functions of a second-order operator with discontinuous coefficients”, Differ. Uravn., 23:6 (1987), 941–952 (In Russian) | MR
[8] S. I. Mitrokhin, “Spectral properties of differential operators with discontinuous coefficients”, Differ. Uravn., 28:3 (1992), 530–532 (In Russian) | MR | Zbl
[9] S. I. Mitrokhin, “On some spectral properties of second-order differential operators with a discontinuous weight function”, Dokl. Akad. Nauk, 356:1 (1997), 13–15 (In Russian) | MR | Zbl
[10] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matematicheskie zametki, 66:6 (1999), 897–912 | Zbl
[11] S. I. Mitrokhin, “Ob asimptotike sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka so znakoperemennoi vesovoi funktsiei”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2018, no. 6, 46–58 | MR | Zbl
[12] G. A. Aigunov, M. M. Gekhtman, “K voprosu o maksimalno vozmozhnoi skorosti rosta sistemy sobstvennykh funktsii operatora Shturma–Liuvillya s nepreryvnoi vesovoi funktsiei na konechnom otrezke”, UMN, 52:3(315) (1997), 161–162 | MR | Zbl
[13] A. P. Gurevich, A. P. Khromov, “Operatory differentsirovaniya pervogo i vtorogo poryadkov so znakoperemennoi vesovoi funktsiei”, Matematicheskie zametki, 56:1 (1994), 3–15 | MR | Zbl
[14] S. I. Mitrokhin, “Asimptotika sobstvennykh znachenii differentsialnogo operatora so znakoperemennoi vesovoi funktsiei”, Izvestiya vuzov. Matematika, 2018, no. 6, 31–47 | MR | Zbl
[15] S. I. Mitrokhin, “On the study of the spectral properties of differential operators with a smooth weight function”, Russian Universities Reports. Mathematics, 25:129 (2020), 25–47 (In Russian) | Zbl
[16] V. A. Vinokurov, V. A. Sadovnichii, “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izvestiya RAN. Seriya: Matematika, 64:4 (2000), 47–108 | MR | Zbl
[17] S. I. Mitrokhin, “O spektralnykh svoistvakh differentsialnogo operatora chetvertogo poryadka s summiruemymi koeffitsientami”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 270, MAIK «Nauka/Interperiodika», M., 2010, 188–197 | MR
[18] S. I. Mitrokhin, “Spektralnye svoistva semeistva differentsialnykh operatorov chetnogo poryadka s summiruemym potentsialom”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2017, no. 4, 3–15 | MR | Zbl
[19] S. I. Mitrokhin, “O spektralnykh svoistvakh differentsialnykh operatorov nechetnogo poryadka s summiruemym potentsialom”, Differentsialnye uravneniya, 47:12 (2011), 1808–1811 | MR | Zbl
[20] S. I. Mitrokhin, “Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 136–149 (In Russian) | MR
[21] R. Bellman, K. L. Cook, Differential-Difference Equations, Mir Publ., Moscow, 1967 (In Russian)
[22] V. A. Sadovnichii, “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matematicheskii sbornik, 72(114):2 (1967), 293–317 | Zbl
[23] V. A. Sadovnichii, Operator Theory, Drofa Publ., Moscow, 2001 (In Russian)