New properties of recurrent motions and limit sets of dynamical systems
Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the earlier article by the authors [A. P. Afanas'ev, S. M. Dzyuba “About new properties of recurrent motions and minimal sets of dynamical systems”, Russian Universities Reports. Mathematics, 26:133 (2021), 5–14] a connection between general motions and recurrent motions in a compact metric space is established, and a very simple behavior of recurrent motions is proved. Based on these results, we introduce here a new definition of recurrent motion which, in contrast to the one widely used in modern literature, provides fairly complete information about the structure of a recurrent motion as a function of time and, therefore, is more illustrative. At the same time, we show that in an abstract metric space, the proposed definition is equivalent to Birkhoff's definition and is equivalent to the generally accepted modern definition in a complete metric space. Necessary and sufficient conditions for recurrence (in the sense of the definition proposed in the article) of a motion in a compact metric space are obtained. It is proved that $\alpha$- and $\omega$-limit sets of any motion are minimal in a compact metric space (this assertion was announced in an earlier paper by the authors). From the minimality of $\alpha$- and $\omega$-limit sets, it is deduced that in a compact metric space, each positively (negatively) Poisson-stable point lies on the trajectory of a recurrent motion, i.e. is a point of a minimal set, and thus, in a compact metric space with a finite positive invariant measure almost all points are points of minimal sets.
Keywords: dynamical systems, minimal sets, recurrent and stable in the sense of Poisson Motions.
@article{VTAMU_2022_27_137_a0,
     author = {A. P. Afanas'ev and S. M. Dzyuba},
     title = {New properties of recurrent motions and limit sets of dynamical systems},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {5--15},
     year = {2022},
     volume = {27},
     number = {137},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a0/}
}
TY  - JOUR
AU  - A. P. Afanas'ev
AU  - S. M. Dzyuba
TI  - New properties of recurrent motions and limit sets of dynamical systems
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2022
SP  - 5
EP  - 15
VL  - 27
IS  - 137
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a0/
LA  - ru
ID  - VTAMU_2022_27_137_a0
ER  - 
%0 Journal Article
%A A. P. Afanas'ev
%A S. M. Dzyuba
%T New properties of recurrent motions and limit sets of dynamical systems
%J Vestnik rossijskih universitetov. Matematika
%D 2022
%P 5-15
%V 27
%N 137
%U http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a0/
%G ru
%F VTAMU_2022_27_137_a0
A. P. Afanas'ev; S. M. Dzyuba. New properties of recurrent motions and limit sets of dynamical systems. Vestnik rossijskih universitetov. Matematika, Tome 27 (2022) no. 137, pp. 5-15. http://geodesic.mathdoc.fr/item/VTAMU_2022_27_137_a0/

[1] A. A. Markov, “Sur une proprieté générale des ensembles minimaux de Birkhoff”, C.R. Acad. Sci., 193 (1931), 823–825

[2] V. V. Nemytskii, V. V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian) | MR

[3] G. D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian)

[4] A. P. Afanas'ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Russian Universities Reports. Mathematics, 26:133 (2021), 5–14 (In Russian)

[5] A. P. Afanasev, S. M. Dzyuba, “Metod postroeniya minimalnykh mnozhestv dinamicheskikh sistem”, Differentsialnye uravneniya, 51:7 (2015), 835–841

[6] A. P. Afanas'ev, S. M. Dzyuba, Poisson Stability in Dynamical and Continuous Periodic Systems, LKI Publ., Moscow, 2007 (In Russian)

[7] J. K. Hale, Theory of Functional Differential Equations, Mir Publ., Moscow, 1984 (In Russian)

[8] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, LKI Publ., Moscow, 2007 (In Russian)

[9] S. X. Aranson, “Ob otsutstvii nezamknutykh ustoichivykh po Puassonu polutraektorii i traektorii dvoyakoasimototicheskikh k dvoinomu predelnomu tsiklu u dinamicheskikh sistem pervoi stepeni negrubosti na orientiruemykh dvumernykh mnogoobraziyakh”, Matematicheskii sbornik, 76(118):2 (1968), 214–230