One method for investigating the solvability of boundary value problems for an implicit differential equation
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 404-413

Voir la notice de l'article provenant de la source Math-Net.Ru

The article concernes a boundary value problem with linear boundary conditions of general form for the scalar differential equation \begin{equation*} f \big(t, x (t), \dot{x} (t) \big)= \widehat{y}(t), \end{equation*} not resolved with respect to the derivative $\dot{x}$ of the required function. It is assumed that the function $f$ satisfies the Caratheodory conditions, and the function $\widehat{y}$ is measurable. The method proposed for studying such a boundary value problem is based on the results about operator equation with a mapping acting from a metric space to a set with distance (this distance satisfies only one axiom of a metric: it is equal to zero if and only if the elements coincide). In terms of the covering set of the function $f(t, x_1, \cdot): \mathbb{R} \to \mathbb{R}$ and the Lipschitz set of the function $f (t,\cdot,x_2): \mathbb{R} \to \mathbb{R} $, conditions for the existence of solutions and their stability to perturbations of the function $f$ generating the differential equation, as well as to perturbations of the right-hand sides of the boundary value problem: the function $ \widehat{y} $ and the value of the boundary condition, are obtained.
Keywords: implicit differential equation, linear boundary conditions, existence of solutions to a boundary value problem, covering mapping of metric spaces.
@article{VTAMU_2021_26_136_a6,
     author = {W. Merchela},
     title = {One method for investigating the solvability of boundary value problems for an implicit differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {404--413},
     publisher = {mathdoc},
     volume = {26},
     number = {136},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/}
}
TY  - JOUR
AU  - W. Merchela
TI  - One method for investigating the solvability of boundary value problems for an implicit differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 404
EP  - 413
VL  - 26
IS  - 136
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/
LA  - ru
ID  - VTAMU_2021_26_136_a6
ER  - 
%0 Journal Article
%A W. Merchela
%T One method for investigating the solvability of boundary value problems for an implicit differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 404-413
%V 26
%N 136
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/
%G ru
%F VTAMU_2021_26_136_a6
W. Merchela. One method for investigating the solvability of boundary value problems for an implicit differential equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 404-413. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/