One method for investigating the solvability of boundary value problems for an implicit differential equation
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 404-413
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article concernes a boundary value problem with linear boundary conditions of general form for the scalar differential equation \begin{equation*} f \big(t, x (t), \dot{x} (t) \big)= \widehat{y}(t), \end{equation*} not resolved with respect to the derivative $\dot{x}$ of the required function. It is assumed that the function $f$ satisfies the Caratheodory conditions, and the function $\widehat{y}$ is measurable. The method proposed for studying such a boundary value problem is based on the results about operator equation with a mapping acting from a metric space to a set with distance (this distance satisfies only one axiom of a metric: it is equal to zero if and only if the elements coincide). In terms of the covering set of the function $f(t, x_1, \cdot): \mathbb{R} \to \mathbb{R}$ and the Lipschitz set of the function $f (t,\cdot,x_2): \mathbb{R} \to \mathbb{R} $, conditions for the existence of solutions and their stability to perturbations of the function $f$ generating the differential equation, as well as to perturbations of the right-hand sides of the boundary value problem: the function $ \widehat{y} $ and the value of the boundary condition, are obtained.
Keywords: implicit differential equation, linear boundary conditions, existence of solutions to a boundary value problem, covering mapping of metric spaces.
@article{VTAMU_2021_26_136_a6,
     author = {W. Merchela},
     title = {One method for investigating the solvability of boundary value problems for an implicit differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {404--413},
     year = {2021},
     volume = {26},
     number = {136},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/}
}
TY  - JOUR
AU  - W. Merchela
TI  - One method for investigating the solvability of boundary value problems for an implicit differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 404
EP  - 413
VL  - 26
IS  - 136
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/
LA  - ru
ID  - VTAMU_2021_26_136_a6
ER  - 
%0 Journal Article
%A W. Merchela
%T One method for investigating the solvability of boundary value problems for an implicit differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 404-413
%V 26
%N 136
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/
%G ru
%F VTAMU_2021_26_136_a6
W. Merchela. One method for investigating the solvability of boundary value problems for an implicit differential equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 404-413. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/

[1] E. S. Zhukovskii, V. Merchela, “O nakryvayuschikh otobrazheniyakh v obobschennykh metricheskikh prostranstvakh v issledovanii neyavnykh differentsialnykh uravnenii”, Ufimskii matematicheskii zhurnal, 12:4 (2020), 42–55 | Zbl

[2] S. Benarab, E. S. Zhukovskii, W. Merchela, “Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 52–63 (In Russian) | MR

[3] W. Merchela, “On stability of solutions of integral equations in the class of measurable functions”, Russian Universities Reports. Mathematics, 26:133 (2021), 44–54 (In Russian) | Zbl

[4] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[5] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[6] E. S. Zhukovskii, E. A. Pluzhnikova, “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differentsialnye uravneniya, 49:4 (2013), 439–455 | Zbl

[7] E. S. Zhukovskii, E. A. Pluzhnikova, “A theorem on operator covering in the product of metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 16:1 (2011), 70–72 (In Russian)

[8] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, Institut kompyuternykh isssledovanii, Moskva–Izhevsk, 2004; D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, Rhode Island, 2001 | DOI | Zbl

[9] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | MR | Zbl

[10] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$–kvazimetricheskikh prostranstv”, Sibirskii matematicheskii zhurnal, 59:6 (2018), 1338–1350 | MR | Zbl

[11] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Proceedings of the Russian Academy of Sciences, 416:2 (2007), 151–155 (In Russian) | Zbl

[12] I. V. Shragin, “Superpositional measurability under generalized Caratheodory conditions”, Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (In Russian)

[13] I D. Serova, “Superpositional measurability of a multivalued function under generalized Caratheodory conditions”, Russian Universities Reports. Mathematics, 26:135 (2021), 305–314 (In Russian) | Zbl

[14] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional differential equations, Nauka Publ., Moscow, 1991 (In Russian)