One method for investigating the solvability of boundary value problems for an implicit differential equation
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 404-413
Voir la notice de l'article provenant de la source Math-Net.Ru
The article concernes a boundary value problem with linear boundary conditions of general form for the scalar differential equation
\begin{equation*}
f \big(t, x (t), \dot{x} (t) \big)= \widehat{y}(t),
\end{equation*}
not resolved with respect to the derivative $\dot{x}$ of the required function. It is assumed that the function $f$ satisfies the Caratheodory conditions, and the function $\widehat{y}$ is measurable. The method proposed for studying such a boundary value problem is based on the results about operator equation with a mapping acting from a metric space to a set with distance (this distance satisfies only one axiom of a metric: it is equal to zero if and only if the elements coincide).
In terms of the covering set of the function $f(t, x_1, \cdot): \mathbb{R} \to \mathbb{R}$ and the Lipschitz set of the function $f (t,\cdot,x_2): \mathbb{R} \to \mathbb{R} $, conditions for the existence of solutions and their stability to perturbations of the function $f$ generating the differential equation, as well as to perturbations of the right-hand sides of the boundary value problem: the function $ \widehat{y} $ and the value of the boundary condition, are obtained.
Keywords:
implicit differential equation, linear boundary conditions, existence of solutions to a boundary value problem, covering mapping of metric spaces.
@article{VTAMU_2021_26_136_a6,
author = {W. Merchela},
title = {One method for investigating the solvability of boundary value problems for an implicit differential equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {404--413},
publisher = {mathdoc},
volume = {26},
number = {136},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/}
}
TY - JOUR AU - W. Merchela TI - One method for investigating the solvability of boundary value problems for an implicit differential equation JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 404 EP - 413 VL - 26 IS - 136 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/ LA - ru ID - VTAMU_2021_26_136_a6 ER -
%0 Journal Article %A W. Merchela %T One method for investigating the solvability of boundary value problems for an implicit differential equation %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 404-413 %V 26 %N 136 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/ %G ru %F VTAMU_2021_26_136_a6
W. Merchela. One method for investigating the solvability of boundary value problems for an implicit differential equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 404-413. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a6/