@article{VTAMU_2021_26_136_a5,
author = {E. B. Laneev and V. A. Anisimov and P. A. Lesik and V. I. Remezova and A. A. Romanov and A. G. Khegai},
title = {On an ill-posed boundary value problem for a metaharmonic equation in a circular cylinder},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {394--403},
year = {2021},
volume = {26},
number = {136},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a5/}
}
TY - JOUR AU - E. B. Laneev AU - V. A. Anisimov AU - P. A. Lesik AU - V. I. Remezova AU - A. A. Romanov AU - A. G. Khegai TI - On an ill-posed boundary value problem for a metaharmonic equation in a circular cylinder JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 394 EP - 403 VL - 26 IS - 136 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a5/ LA - ru ID - VTAMU_2021_26_136_a5 ER -
%0 Journal Article %A E. B. Laneev %A V. A. Anisimov %A P. A. Lesik %A V. I. Remezova %A A. A. Romanov %A A. G. Khegai %T On an ill-posed boundary value problem for a metaharmonic equation in a circular cylinder %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 394-403 %V 26 %N 136 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a5/ %G ru %F VTAMU_2021_26_136_a5
E. B. Laneev; V. A. Anisimov; P. A. Lesik; V. I. Remezova; A. A. Romanov; A. G. Khegai. On an ill-posed boundary value problem for a metaharmonic equation in a circular cylinder. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 394-403. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a5/
[1] G. R. Ivanitskii, “Thermovision in medicine”, Herald of the Russian Academy of Sciences, 76:1 (2006), 48–58 (In Russian) | MR
[2] J. P. Agnelli, A. A. Barrea, C. V. Turner, “Tumor location and parameter estimation by thermography”, Mathematical and Computer Modelling, 53:7-8 (2011), 1527–1534 | DOI | Zbl
[3] E. B. Laneev, B. Vasudevan, “On a stable solution of a mixed problem for the Laplace equation”, PFUR Reports. Series: Applied mathematics and computer science, 1999, no. 1, 128–133 (In Russian) | MR | Zbl
[4] E. B. Laneev, “Construction of a Carleman Function Based on the Tikhonov Regularization Method in an Ill-Posed Problem for the Laplace Equation”, Differential Equations, 54:4 (2018), 476–485 | DOI | MR | Zbl
[5] E. B. Laneev, D. Yu. Bykov, A. V. Zubarenko, O. N. Kulikova, D. A. Morozova, E. V. Shunin, “On an ill-posed boundary value problem for the Laplace equation in a circular cylinder”, Russian Universities Reports. Mathematics, 26:133 (2021), 35–43 (In Russian) | Zbl
[6] A. N. Tikhonov, V. Ya. Arsenin, Methods for Solving Ill-posed Problems, Nauka Publ., Moscow, 1979 (In Russian)
[7] A. N. Tikhonov A.N., V. B. Glasko, O. K. Litvinenko, V. R. Melikhov, “On the continuation of the potential towards the perturbing masses based on the regularization method”, Izv. AN SSSR. Fizika Zemli, 1968, no. 1, 30–48 (In Russian)
[8] E. B. Laneev, M. N. Muratov,, “An inverse problem to a boundary value problem for the Laplace equation with a condition of the third kind on an inexactly specified boundary”, PFUR Reports. Series: Mathematics, 10:1 (2003), 100–110 (In Russian)