On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 382-393

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions of negativity for the Green's function of a two-point boundary value problem $$ \mathcal{L}_\lambda u := u^{(n)}-\lambda\int_0^l u(s) d_s r(x,s)=f(x), \ \ \ x\in[0,l], \ \ \ B^k(u)=\alpha, $$ where $B^k(u)=(u(0),\ldots,u^{(n-k-1)}(0),u(l),-u'(l),\ldots,(-1)^{(k-1)}u^{(k-1)}(0)),$ $n\ge3,$ $0\!\!k\!\!n,$ $k$ is odd, are considered. The function $r(x,s)$ is assumed to be non-decreasing in the second argument. A necessary and sufficient condition for the nonnegativity of the solution of this boundary value problem on the set $E$ of functions satisfying the conditions $$ u(0)=\cdots=u^{(n-k-2)}(0)=0, \ \ \ u(l)=\cdots=u^{(k-2)}(l)=0, $$ $u^{(n-k-1)}(0)\ge0,$ $u^{(k-1)}(l)\ge0,$ $f(x)\le 0$ is obtained. This condition lies in the subcriticality of boundary value problems with vector functionals $B^{k-1}$ and $B^{k+1}.$ Let $k$ be even and $\lambda^k$ be the smallest positive value of $\lambda$ for which the problem $\mathcal{L}_\lambda u=0,$ $B^ku=0$ has a nontrivial solution. Then the pair of conditions $\lambda \lambda^{k-1}$ and $\lambda \lambda^{k+1}$ is necessary and sufficient for positivity of the solution of the problem.
Keywords: Green's function, positivity, functional differential equation.
@article{VTAMU_2021_26_136_a4,
     author = {S. M. Labovski},
     title = {On a necessary and sufficient condition for the negativeness of the {Green{\textquoteright}s} function of a two-point boundary value problem for a functional differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {382--393},
     publisher = {mathdoc},
     volume = {26},
     number = {136},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/}
}
TY  - JOUR
AU  - S. M. Labovski
TI  - On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 382
EP  - 393
VL  - 26
IS  - 136
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/
LA  - ru
ID  - VTAMU_2021_26_136_a4
ER  - 
%0 Journal Article
%A S. M. Labovski
%T On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 382-393
%V 26
%N 136
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/
%G ru
%F VTAMU_2021_26_136_a4
S. M. Labovski. On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 382-393. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/