On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 382-393
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions of negativity for the Green's function of a two-point boundary value problem
$$
\mathcal{L}_\lambda u := u^{(n)}-\lambda\int_0^l u(s) d_s r(x,s)=f(x), \ \ \ x\in[0,l], \ \ \ B^k(u)=\alpha,
$$
where $B^k(u)=(u(0),\ldots,u^{(n-k-1)}(0),u(l),-u'(l),\ldots,(-1)^{(k-1)}u^{(k-1)}(0)),$
$n\ge3,$ $0\!\!k\!\!n,$ $k$ is odd, are considered. The function $r(x,s)$ is assumed to be non-decreasing in the second argument.
A necessary and sufficient condition for the nonnegativity of the solution of this boundary value problem on the set $E$ of functions satisfying the conditions
$$
u(0)=\cdots=u^{(n-k-2)}(0)=0, \ \ \ u(l)=\cdots=u^{(k-2)}(l)=0,
$$
$u^{(n-k-1)}(0)\ge0,$ $u^{(k-1)}(l)\ge0,$ $f(x)\le 0$ is obtained.
This condition lies in the subcriticality of boundary value problems with vector functionals $B^{k-1}$ and $B^{k+1}.$ Let $k$ be even and $\lambda^k$ be the smallest positive value of $\lambda$ for which the problem $\mathcal{L}_\lambda u=0,$ $B^ku=0$ has a nontrivial solution.
Then the pair of conditions $\lambda \lambda^{k-1}$ and $\lambda \lambda^{k+1}$ is necessary and sufficient for positivity of the solution of the problem.
Keywords:
Green's function, positivity, functional differential equation.
@article{VTAMU_2021_26_136_a4,
author = {S. M. Labovski},
title = {On a necessary and sufficient condition for the negativeness of the {Green{\textquoteright}s} function of a two-point boundary value problem for a functional differential equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {382--393},
publisher = {mathdoc},
volume = {26},
number = {136},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/}
}
TY - JOUR AU - S. M. Labovski TI - On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 382 EP - 393 VL - 26 IS - 136 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/ LA - ru ID - VTAMU_2021_26_136_a4 ER -
%0 Journal Article %A S. M. Labovski %T On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 382-393 %V 26 %N 136 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/ %G ru %F VTAMU_2021_26_136_a4
S. M. Labovski. On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 382-393. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a4/