On the existence problem for a fixed point of a generalized contracting multivalued mapping
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the still unresolved question, posed in [S. Reich, Some Fixed Point Problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198], of existence in a complete metric space $X$ of a fixed point for a generalized contracting multivalued map $\Phi: X \rightrightarrows X $ having closed values $ \Phi (x) \subset X$ for all $ x \in X. $ Generalized contraction is understood as a natural extension of the Browder–Krasnoselsky definition of this property to multivalued maps: \begin{equation*} \forall x, u \in X \ \ h \bigl(\varphi(x), \varphi(u) \bigr) \leq \eta \bigl(\rho(x, u) \bigr), \end{equation*} where the function $ \eta: \mathbb {R}_+\to\mathbb{R}_+$ is increasing, right continuous, and for all $d>0,$\linebreak $\eta(d)$ ($h(\cdot, \cdot)$ denotes the Hausdorff distance between sets in the space $X\!$). We give an outline of the statements obtained in the literature that solve the S. Reich problem with additional requirements on the generalized contraction $\Phi.$ In the simplest case, when the multivalued generalized contraction map $\Phi$ acts in $\mathbb{R},$ without any additional conditions, we prove the existence of a fixed point for this map.
Keywords: fixed point, generalized contraction, multivalued map in metric space, the Browder–Krasnoselsky fixed point theorem.
@article{VTAMU_2021_26_136_a3,
     author = {E. S. Zhukovskiy},
     title = {On the existence problem for a fixed point of a generalized contracting multivalued mapping},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {372--381},
     publisher = {mathdoc},
     volume = {26},
     number = {136},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - On the existence problem for a fixed point of a generalized contracting multivalued mapping
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 372
EP  - 381
VL  - 26
IS  - 136
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/
LA  - ru
ID  - VTAMU_2021_26_136_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T On the existence problem for a fixed point of a generalized contracting multivalued mapping
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 372-381
%V 26
%N 136
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/
%G ru
%F VTAMU_2021_26_136_a3
E. S. Zhukovskiy. On the existence problem for a fixed point of a generalized contracting multivalued mapping. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/