On the existence problem for a fixed point of a generalized contracting multivalued mapping
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the still unresolved question, posed in [S. Reich, Some Fixed Point Problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198], of existence in a complete metric space $X$ of a fixed point for a generalized contracting multivalued map $\Phi: X \rightrightarrows X $ having closed values $ \Phi (x) \subset X$ for all $ x \in X. $ Generalized contraction is understood as a natural extension of the Browder–Krasnoselsky definition of this property to multivalued maps:
\begin{equation*}
\forall x, u \in X \ \ h \bigl(\varphi(x), \varphi(u) \bigr) \leq \eta \bigl(\rho(x, u) \bigr),
\end{equation*}
where the function $ \eta: \mathbb {R}_+\to\mathbb{R}_+$ is increasing, right continuous, and for all $d>0,$\linebreak $\eta(d)$ ($h(\cdot, \cdot)$ denotes the Hausdorff distance between sets in the space $X\!$). We give an outline of the statements obtained in the literature that solve the S. Reich problem with additional requirements on the generalized contraction $\Phi.$ In the simplest case, when the multivalued generalized contraction map $\Phi$ acts in $\mathbb{R},$ without any additional conditions, we prove the existence of a fixed point for this map.
Keywords:
fixed point, generalized contraction, multivalued map in metric space, the Browder–Krasnoselsky fixed point theorem.
@article{VTAMU_2021_26_136_a3,
author = {E. S. Zhukovskiy},
title = {On the existence problem for a fixed point of a generalized contracting multivalued mapping},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {372--381},
publisher = {mathdoc},
volume = {26},
number = {136},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/}
}
TY - JOUR AU - E. S. Zhukovskiy TI - On the existence problem for a fixed point of a generalized contracting multivalued mapping JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 372 EP - 381 VL - 26 IS - 136 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/ LA - ru ID - VTAMU_2021_26_136_a3 ER -
%0 Journal Article %A E. S. Zhukovskiy %T On the existence problem for a fixed point of a generalized contracting multivalued mapping %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 372-381 %V 26 %N 136 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/ %G ru %F VTAMU_2021_26_136_a3
E. S. Zhukovskiy. On the existence problem for a fixed point of a generalized contracting multivalued mapping. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/