@article{VTAMU_2021_26_136_a3,
author = {E. S. Zhukovskiy},
title = {On the existence problem for a fixed point of a generalized contracting multivalued mapping},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {372--381},
year = {2021},
volume = {26},
number = {136},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/}
}
TY - JOUR AU - E. S. Zhukovskiy TI - On the existence problem for a fixed point of a generalized contracting multivalued mapping JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 372 EP - 381 VL - 26 IS - 136 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/ LA - ru ID - VTAMU_2021_26_136_a3 ER -
%0 Journal Article %A E. S. Zhukovskiy %T On the existence problem for a fixed point of a generalized contracting multivalued mapping %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 372-381 %V 26 %N 136 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/ %G ru %F VTAMU_2021_26_136_a3
E. S. Zhukovskiy. On the existence problem for a fixed point of a generalized contracting multivalued mapping. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/
[1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl
[2] S. Kobzash, “Fixed points and completeness in metric and generalized metric spaces”, Fundam. Prikl. Mat., 22:1 (2018), 127–215 (In Russian) | MR
[3] S. B. Nadler, “Multi-valued contraction mappings”, Pacific Journal of Mathematics, 30:2 (1969), 475–488 | DOI | MR | Zbl
[4] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O moschnosti mnozhestva tochek sovpadeniya otobrazhenii metricheskikh, normirovannykh i chastichno uporyadochennykh prostranstv”, Matem. sb., 209:8 (2018), 3–28 | MR | Zbl
[5] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, V. V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, 2nd ed., Librokom, Moscow, 2011 (In Russian)
[6] A. Granas, J. Dugundji, Fixed Point Theory, Monograph, Springer–Verlag, New York, 2003 | Zbl
[7] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | MR | Zbl
[8] I. A. Bakhtin, “The principle of contracted mappings in almost metric spaces”, Functional Analysis, 30 (1989), 26–37 (In Russian) | Zbl
[9] D. Panthi, K. Jha, G. Porru, “A fixed point theorem in dislocated quasi-metric space”, American Journal of Mathematics and Statistics, 3:3 (2013), 153–156
[10] T. V. Zhukovskaya, W. Merchela, A. I. Shindyapin, “On coincidence points of mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian) | Zbl
[11] E. S. Zhukovskii, E. A. Panasenko, “O nepodvizhnykh tochkakh mnogoznachnykh otobrazhenii v prostranstvakh s vektornoznachnoi metrikoi”, Vypusk posvyaschen 70-letnemu yubileyu Aleksandra Georgievicha Chentsova, Tr. IMM UrO RAN, 24, no. 1, 2018, 93–105 ; E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Proc. Steklov Inst. Math. (Suppl.), 305, no. suppl. 1, 2019, S191–S203 | DOI | Zbl
[12] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A., 71 (1968), 27–35 | DOI | Zbl
[13] M. A. Krasnoselsky, G. M. Vainiko, P. P. Zabreiko, Ya. B. Rutitskiy, V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka Publ., Moscow, 1969 (In Russian)
[14] J. Jachymski, “Around Browder’s fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61 | DOI | MR | Zbl
[15] D. W. Boyd, J. S. W. Wong, “On nonlinear contractions”, Proceedings of the American Mathematical Society, 89 (1968), 458–464
[16] E. S. Zhukovsky, “A note on generalized compression theorems”, Mat. notes, 111:2, (to appear) (2022), 211–218 (In Russian) | MR
[17] A. I. Perov, “Mnogomernaya versiya printsipa obobschennogo szhatiya M. A. Krasnoselskogo”, Funktsionalnyi analiz i ego prilozheniya, 44:1 (2010), 83–87 | MR | Zbl
[18] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | MR | Zbl
[19] T. V. Zhukovskaya, E. S. Zhukovskiy, “About one quasi-metric space”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1285–1292 (In Russian)
[20] S. Reich, “Fixed points of contractive functions”, Italian Mathematical Union. Bulletin, 5:4 (1972), 26–42 | Zbl
[21] S. Reich, “Some fixed point problems”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198
[22] S. Reich, “Some problems and results in fixed point theory”, Contemporary Mathematics AMS, 21 (1983), 179–187 | DOI | Zbl
[23] P. V. Semenov, “O nepodvizhnykh tochkakh mnogoznachnykh szhatii”, Funkts. analiz i ego pril., 36:2 (2002), 89–92 | MR | Zbl
[24] P. Z. Daffer, H. Kaneko, W. Li, “On a conjecture of S. Reich”, Proceedings of the American Mathematical Society, 124:10 (1996), 3159–3162 | DOI | MR | Zbl