On the existence problem for a fixed point of a generalized contracting multivalued mapping
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the still unresolved question, posed in [S. Reich, Some Fixed Point Problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198], of existence in a complete metric space $X$ of a fixed point for a generalized contracting multivalued map $\Phi: X \rightrightarrows X $ having closed values $ \Phi (x) \subset X$ for all $ x \in X. $ Generalized contraction is understood as a natural extension of the Browder–Krasnoselsky definition of this property to multivalued maps: \begin{equation*} \forall x, u \in X \ \ h \bigl(\varphi(x), \varphi(u) \bigr) \leq \eta \bigl(\rho(x, u) \bigr), \end{equation*} where the function $ \eta: \mathbb {R}_+\to\mathbb{R}_+$ is increasing, right continuous, and for all $d>0,$\linebreak $\eta(d) ($h(\cdot, \cdot)$ denotes the Hausdorff distance between sets in the space $X\!$). We give an outline of the statements obtained in the literature that solve the S. Reich problem with additional requirements on the generalized contraction $\Phi.$ In the simplest case, when the multivalued generalized contraction map $\Phi$ acts in $\mathbb{R},$ without any additional conditions, we prove the existence of a fixed point for this map.
Keywords: fixed point, generalized contraction, multivalued map in metric space, the Browder–Krasnoselsky fixed point theorem.
@article{VTAMU_2021_26_136_a3,
     author = {E. S. Zhukovskiy},
     title = {On the existence problem for a fixed point of a generalized contracting multivalued mapping},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {372--381},
     year = {2021},
     volume = {26},
     number = {136},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - On the existence problem for a fixed point of a generalized contracting multivalued mapping
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 372
EP  - 381
VL  - 26
IS  - 136
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/
LA  - ru
ID  - VTAMU_2021_26_136_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T On the existence problem for a fixed point of a generalized contracting multivalued mapping
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 372-381
%V 26
%N 136
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/
%G ru
%F VTAMU_2021_26_136_a3
E. S. Zhukovskiy. On the existence problem for a fixed point of a generalized contracting multivalued mapping. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 372-381. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a3/

[1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl

[2] S. Kobzash, “Fixed points and completeness in metric and generalized metric spaces”, Fundam. Prikl. Mat., 22:1 (2018), 127–215 (In Russian) | MR

[3] S. B. Nadler, “Multi-valued contraction mappings”, Pacific Journal of Mathematics, 30:2 (1969), 475–488 | DOI | MR | Zbl

[4] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O moschnosti mnozhestva tochek sovpadeniya otobrazhenii metricheskikh, normirovannykh i chastichno uporyadochennykh prostranstv”, Matem. sb., 209:8 (2018), 3–28 | MR | Zbl

[5] Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, V. V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, 2nd ed., Librokom, Moscow, 2011 (In Russian)

[6] A. Granas, J. Dugundji, Fixed Point Theory, Monograph, Springer–Verlag, New York, 2003 | Zbl

[7] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | MR | Zbl

[8] I. A. Bakhtin, “The principle of contracted mappings in almost metric spaces”, Functional Analysis, 30 (1989), 26–37 (In Russian) | Zbl

[9] D. Panthi, K. Jha, G. Porru, “A fixed point theorem in dislocated quasi-metric space”, American Journal of Mathematics and Statistics, 3:3 (2013), 153–156

[10] T. V. Zhukovskaya, W. Merchela, A. I. Shindyapin, “On coincidence points of mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian) | Zbl

[11] E. S. Zhukovskii, E. A. Panasenko, “O nepodvizhnykh tochkakh mnogoznachnykh otobrazhenii v prostranstvakh s vektornoznachnoi metrikoi”, Vypusk posvyaschen 70-letnemu yubileyu Aleksandra Georgievicha Chentsova, Tr. IMM UrO RAN, 24, no. 1, 2018, 93–105 ; E. S. Zhukovskiy, E. A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Proc. Steklov Inst. Math. (Suppl.), 305, no. suppl. 1, 2019, S191–S203 | DOI | Zbl

[12] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A., 71 (1968), 27–35 | DOI | Zbl

[13] M. A. Krasnoselsky, G. M. Vainiko, P. P. Zabreiko, Ya. B. Rutitskiy, V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka Publ., Moscow, 1969 (In Russian)

[14] J. Jachymski, “Around Browder’s fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61 | DOI | MR | Zbl

[15] D. W. Boyd, J. S. W. Wong, “On nonlinear contractions”, Proceedings of the American Mathematical Society, 89 (1968), 458–464

[16] E. S. Zhukovsky, “A note on generalized compression theorems”, Mat. notes, 111:2, (to appear) (2022), 211–218 (In Russian) | MR

[17] A. I. Perov, “Mnogomernaya versiya printsipa obobschennogo szhatiya M. A. Krasnoselskogo”, Funktsionalnyi analiz i ego prilozheniya, 44:1 (2010), 83–87 | MR | Zbl

[18] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | MR | Zbl

[19] T. V. Zhukovskaya, E. S. Zhukovskiy, “About one quasi-metric space”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1285–1292 (In Russian)

[20] S. Reich, “Fixed points of contractive functions”, Italian Mathematical Union. Bulletin, 5:4 (1972), 26–42 | Zbl

[21] S. Reich, “Some fixed point problems”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198

[22] S. Reich, “Some problems and results in fixed point theory”, Contemporary Mathematics AMS, 21 (1983), 179–187 | DOI | Zbl

[23] P. V. Semenov, “O nepodvizhnykh tochkakh mnogoznachnykh szhatii”, Funkts. analiz i ego pril., 36:2 (2002), 89–92 | MR | Zbl

[24] P. Z. Daffer, H. Kaneko, W. Li, “On a conjecture of S. Reich”, Proceedings of the American Mathematical Society, 124:10 (1996), 3159–3162 | DOI | MR | Zbl