On ring solutions of neural field equations
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 363-371

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to investigation of integro-differential equation with the Hammerstein integral operator of the following form: \begin{equation*} \begin{array}{c} \partial_tu(t,x)=-\tau u(t,x,x_\mathrm{f})+\int\limits_{\mathbb{R}^2} \omega(x-y)f(u(t,y)) dy, \ t\geq0,\ x\in \mathbb{R}^2. \end{array} \end{equation*} The equation describes the dynamics of electrical potentials $u(t,x)$ in a planar neural medium and has the name of neural field equation. We study ring solutions that are represented by stationary radially symmetric solutions corresponding to the active state of the neural medium in between two concentric circles and the rest state elsewhere in the neural field. We suggest conditions of existence of ring solutions as well as a method of their numerical approximation. The approach used relies on the replacement of the probabilistic neuronal activation function $f$ that has sigmoidal shape by a Heaviside-type function. The theory is accompanied by an example illustrating the procedure of investigation of ring solutions of a neural field equation containing a typically used in the neuroscience community neuronal connectivity function that allows taking into account both excitatory and inhibitory interneuronal interactions. Similar to the case of bump solutions (i. e. stationary solutions of neural field equations, which correspond to the activated area in the neural field represented by the interior of some circle) at a high values of the neuronal activation threshold there coexist a broad ring and a narrow ring solutions that merge together at the critical value of the activation threshold, above which there are no ring solutions.
Keywords: two-dimensional neural field equation, ring solution, approximation of solutions.
Mots-clés : existence of solutions
@article{VTAMU_2021_26_136_a2,
     author = {R. Atmania and E. O. Burlakov and I. N. Malkov},
     title = {On ring solutions of neural field equations},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {363--371},
     publisher = {mathdoc},
     volume = {26},
     number = {136},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/}
}
TY  - JOUR
AU  - R. Atmania
AU  - E. O. Burlakov
AU  - I. N. Malkov
TI  - On ring solutions of neural field equations
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 363
EP  - 371
VL  - 26
IS  - 136
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/
LA  - ru
ID  - VTAMU_2021_26_136_a2
ER  - 
%0 Journal Article
%A R. Atmania
%A E. O. Burlakov
%A I. N. Malkov
%T On ring solutions of neural field equations
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 363-371
%V 26
%N 136
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/
%G ru
%F VTAMU_2021_26_136_a2
R. Atmania; E. O. Burlakov; I. N. Malkov. On ring solutions of neural field equations. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 363-371. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/