Mots-clés : existence of solutions
@article{VTAMU_2021_26_136_a2,
author = {R. Atmania and E. O. Burlakov and I. N. Malkov},
title = {On ring solutions of neural field equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {363--371},
year = {2021},
volume = {26},
number = {136},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/}
}
TY - JOUR AU - R. Atmania AU - E. O. Burlakov AU - I. N. Malkov TI - On ring solutions of neural field equations JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 363 EP - 371 VL - 26 IS - 136 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/ LA - ru ID - VTAMU_2021_26_136_a2 ER -
R. Atmania; E. O. Burlakov; I. N. Malkov. On ring solutions of neural field equations. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 363-371. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a2/
[1] E. Burlakov, “On inclusions arising in neural field modeling”, Differential Equations and Dynamical Systems, 29 (2021), 765–787 | DOI | MR
[2] E. O. Burlakov, T. V. Zhukovskaya, E. S. Zhukovskiy, N. P. Puchkov, “On Continuous and Discontinuous Models of Neural Fields”, Journal of Mathematical Sciences, 259:3 (2021), 272–282 | DOI | Zbl
[3] S. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biological Cybernetics, 27 (1977), 77–87 | DOI | MR | Zbl
[4] C. R. Laing, W. C. Troy, “Two-bump solutions of Amari-type models of neuronal pattern formation”, Physica D: Nonlinear Phenomena, 178 (2003), 190–218 | DOI | MR | Zbl
[5] C. R. Laing, W. C. Troy, B. Gutkin, G. B Ermentrout, “Multiple bumps in a neuronal network model of working memory”, SIAM Journal on Applied Mathematics, 63 (2002), 62–97 | DOI | MR | Zbl
[6] S. Coombes, “Waves, bumps, and patterns in neural field theories”, Biological Cybernetics, 93 (2005), 91–108 | DOI | MR | Zbl
[7] P. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2011), 033001 | DOI
[8] C. R. Laing, W. C. Troy, “PDE methods for non-local models”, SIAM Journal on Applied Dynamical Systems, 2:3 (2003), 487–516 | DOI | MR | Zbl
[9] S. Kishimoto, S. Amari, “Existence and stability of local excitations in homogeneous neural fields”, Journal of Mathematical Biology, 7 (1979), 303–318 | DOI | MR | Zbl
[10] A. Oleynik, A. Ponosov, J. Wyller, “On the properties of nonlinear nonlocal operators arising in neural field models”, Journal Mathematical Analysis and Application, 398 (2013), 398–351 | DOI | MR | Zbl
[11] E. Burlakov, J. Wyller, A Ponosov, “Stationary solutions of continuous and discontinuous neural field equations”, Journal of Mathematical Analysis and Applications, 444:1 (2016), 47–68 | DOI | MR | Zbl
[12] S. E. Folias, P. C. Bressloff, “Breathers in two-dimensional neural media”, Physical Review Letters, 95 (2005), 208107 | DOI
[13] M. R. Owen, C. R. Laing, S. Coombes, “Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities”, New Journal of Physics, 9 (2007), 378 | DOI
[14] E. O. Burlakov, M. A. Nasonkina, “On connection between continuous and discontinuous neural field models with microstructure: I. General theory”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 17–30 (In Russian)
[15] E. O. Burlakov, I. N. Malkov, “On connection between continuous and discontinuous neural field models with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps")”, Russian Universities Reports. Mathematics, 25:129 (2020), 6–17 (In Russian) | Zbl