Mots-clés : positive solution, existence
@article{VTAMU_2021_26_136_a0,
author = {G. \`E. Abduragimov and P. E. Abduragimova and M. M. Kuramagomedova},
title = {On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {341--347},
year = {2021},
volume = {26},
number = {136},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a0/}
}
TY - JOUR AU - G. È. Abduragimov AU - P. E. Abduragimova AU - M. M. Kuramagomedova TI - On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 341 EP - 347 VL - 26 IS - 136 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a0/ LA - ru ID - VTAMU_2021_26_136_a0 ER -
%0 Journal Article %A G. È. Abduragimov %A P. E. Abduragimova %A M. M. Kuramagomedova %T On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 341-347 %V 26 %N 136 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a0/ %G ru %F VTAMU_2021_26_136_a0
G. È. Abduragimov; P. E. Abduragimova; M. M. Kuramagomedova. On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 136, pp. 341-347. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_136_a0/
[1] A. Granas, R. Guenther, J. Lee, Nonlinear Boundary Value Problems for Ordinary Differential Equations, National Scientific Publishers, Warszawa, 1985, 132 pp.
[2] A. I. Bulgakov, “Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions”, Russian Acad. Sci. Sb. Math., 77:1 (1994), 193–212 | MR
[3] S. Benarab, “Two-sided estimates for solutions of boundary value problems for implicit differential equations”, Russian Universities Reports. Mathematics, 26:134 (2021), 216–220 (In Russian) | Zbl
[4] A. N. Pchelintsev, A. A. Polunovskiy, I. Yu. Yukhanova, “The harmonic balance method for finding approximate periodic solutions of the Lorenz system”, Tambov University Reports. Series: Natural and Technical Sciences, 24:126 (2019), 187–203 (In Russian)
[5] He. Ying, “Existence theory for single positive solution to fourth-order value problems”, Advance in Pure Mathematics, 4 (2014), 480–486 | DOI
[6] Y. Liu, “Miltiple positive of nonlinear singular boundary value problem for fourth-order equations”, Advances Mathematics Letters, 4 (2004), 747–757 | DOI
[7] E. I. Abduragimov, “Positive solution of a two-point boundary value problem for one fourth-order ODE and a numerical method for its consruction”, Samara University Reports. Natural Science Series, 2:76 (2010), 5–12 (In Russian)
[8] E. I. Abduragimov, “Existence of a positive solution to a two-point boundary value problem for one nonlinear fourth-order ODE”, Samara University Reports. Natural Science Series, 10:121 (2014), 9–16 (In Russian) | Zbl
[9] E. I. Abduragimov, T. Yu. Hajiyeva, R. K. Magomedova, “A numerical method for construction a positive solution to a two-point boundary value problem for one nonlinear fourth-order ODE”, Dagestan University Reports. Series: Natural Sciences, 6 (2015), 85–92 (In Russian)
[10] E. I. Abduragimov, P. E. Abduragimova, T. Yu. Hajiyeva, “Two - point boundary value problem for one nonlinear ODE of the 4 order. Existence, uniqueness of a positive solution and a numerical method for its consruction”, Dagestan University Reports. Series: Natural Sciences, 3 (2019), 79–85 (In Russian)
[11] T. Y. Na, Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979, 296 pp. | Zbl
[12] E. Kamke, Handbook of Ordinary Differential Equations, Science Publ., Moscow, 1976 (In Russian)