Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 315-336
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $k[S]$-hierarchy and its strict version are two deformations of the commutative algebra $k[S]$, $k=\mathbb{R}$ or $\mathbb{C},$ in the $\mathbb{N} \times \mathbb{N}$-matrices, where $S$ is the matrix of the shift operator. In this paper we show first of all that both deformations correspond to conjugating $k[S]$ with elements from an appropriate group. The dressing matrix of the deformation is unique in the case of the $k[S]$-hierarchy and it is determined up to a multiple of the identity in the strict case. This uniqueness enables one to prove directly the equivalence of the Lax form of the k[S]-hierarchy with a set of Sato–Wilson equations. The analogue of the Sato–Wilson equations for the strict $k[S]$-hierarchy always implies the Lax equations of this hierarchy. Both systems are equivalent if the setting one works in, is Cauchy solvable in dimension one. Finally we present a Banach Lie group $ G(\mathcal{S}_{2}),$ two subgroups $ P_{+}(H)$ and $ U_{+}(H)$ of $G(\mathcal{S}_{2}),$ with $ U_{+}(H) \subset P_{+}(H),$ such that one can construct from the homogeneous spaces $G(\mathcal{S}_{2})/ P_{+}(H)$ resp. $G(\mathcal{S}_{2})/U_{+}(H)$ solutions of respectively the $k[S]$-hierarchy and its strict version.
Keywords: homogeneous spaces, integrable hierarchies, Sato-Wilson form
Mots-clés : Lax equations, wave matrices.
@article{VTAMU_2021_26_135_a7,
     author = {G. F. Helminck and J. A. Weenink},
     title = {Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {315--336},
     year = {2021},
     volume = {26},
     number = {135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - J. A. Weenink
TI  - Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 315
EP  - 336
VL  - 26
IS  - 135
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/
LA  - en
ID  - VTAMU_2021_26_135_a7
ER  - 
%0 Journal Article
%A G. F. Helminck
%A J. A. Weenink
%T Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 315-336
%V 26
%N 135
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/
%G en
%F VTAMU_2021_26_135_a7
G. F. Helminck; J. A. Weenink. Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 315-336. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/

[1] G. F. Helminck, J. A. Weenink, “Integrable hierarchies in the $\mathbb{N} \times \mathbb{N} $-matrices related to powers of the shift matrix”, Journal of Geometry and Physics, 148 (2020), 103560 | DOI | Zbl

[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Proceedings RIMS symposium on nonlinear integrable systems, eds. M. Jimbo, T. Miwa, World Scientific Publishers, 1983, 41–119

[3] G. F. Helminck, J. W. van de Leur, “Darboux Transformations for the KP Hierarchy in the Segal-Wilson Setting”, Canad. J. Math., 53:2 (2001), 278–309 | DOI | Zbl

[4] A. Pressley, G. Segal, Loop Groups, Oxford Mathematical Monographs, Clarendon Press–Oxford, Oxford, 1988, 328 pp. | Zbl

[5] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 63 (1985), 1–64

[6] G. F. Helminck, E. A. Panasenko, “Geometric solutions of the strict KP hierarchy”, Theor. Math. Phys., 198:1 (2019), 48–68 | DOI | Zbl