Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 315-336
Voir la notice de l'article provenant de la source Math-Net.Ru
The $k[S]$-hierarchy and its strict version are two deformations of the commutative algebra $k[S]$, $k=\mathbb{R}$ or $\mathbb{C},$ in the $\mathbb{N} \times \mathbb{N}$-matrices, where $S$ is the matrix of the shift operator.
In this paper we show first of all that both deformations correspond to conjugating $k[S]$ with elements from an appropriate group. The dressing matrix of the deformation is unique in the case of the $k[S]$-hierarchy and it is determined up to a multiple of the identity in the strict case. This uniqueness enables one to prove directly the equivalence of the Lax form of the k[S]-hierarchy with a set of Sato–Wilson equations. The analogue of the Sato–Wilson equations for the strict $k[S]$-hierarchy always implies the Lax equations of this hierarchy. Both systems are equivalent if the setting one works in, is Cauchy solvable in dimension one.
Finally we present
a Banach Lie group $ G(\mathcal{S}_{2}),$ two subgroups $ P_{+}(H)$ and $ U_{+}(H)$ of $G(\mathcal{S}_{2}),$ with $ U_{+}(H) \subset P_{+}(H),$ such that one can construct from
the homogeneous spaces $G(\mathcal{S}_{2})/ P_{+}(H)$ resp. $G(\mathcal{S}_{2})/U_{+}(H)$
solutions of respectively the $k[S]$-hierarchy
and its strict version.
Keywords:
homogeneous spaces, integrable hierarchies, Sato-Wilson form
Mots-clés : Lax equations, wave matrices.
Mots-clés : Lax equations, wave matrices.
@article{VTAMU_2021_26_135_a7,
author = {G. F. Helminck and J. A. Weenink},
title = {Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {315--336},
publisher = {mathdoc},
volume = {26},
number = {135},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/}
}
TY - JOUR AU - G. F. Helminck AU - J. A. Weenink TI - Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 315 EP - 336 VL - 26 IS - 135 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/ LA - en ID - VTAMU_2021_26_135_a7 ER -
%0 Journal Article %A G. F. Helminck %A J. A. Weenink %T Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 315-336 %V 26 %N 135 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/ %G en %F VTAMU_2021_26_135_a7
G. F. Helminck; J. A. Weenink. Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 315-336. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/