Mots-clés : Lax equations, wave matrices.
@article{VTAMU_2021_26_135_a7,
author = {G. F. Helminck and J. A. Weenink},
title = {Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {315--336},
year = {2021},
volume = {26},
number = {135},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/}
}
TY - JOUR AU - G. F. Helminck AU - J. A. Weenink TI - Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 315 EP - 336 VL - 26 IS - 135 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/ LA - en ID - VTAMU_2021_26_135_a7 ER -
%0 Journal Article %A G. F. Helminck %A J. A. Weenink %T Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 315-336 %V 26 %N 135 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/ %G en %F VTAMU_2021_26_135_a7
G. F. Helminck; J. A. Weenink. Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 315-336. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a7/
[1] G. F. Helminck, J. A. Weenink, “Integrable hierarchies in the $\mathbb{N} \times \mathbb{N} $-matrices related to powers of the shift matrix”, Journal of Geometry and Physics, 148 (2020), 103560 | DOI | Zbl
[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Proceedings RIMS symposium on nonlinear integrable systems, eds. M. Jimbo, T. Miwa, World Scientific Publishers, 1983, 41–119
[3] G. F. Helminck, J. W. van de Leur, “Darboux Transformations for the KP Hierarchy in the Segal-Wilson Setting”, Canad. J. Math., 53:2 (2001), 278–309 | DOI | Zbl
[4] A. Pressley, G. Segal, Loop Groups, Oxford Mathematical Monographs, Clarendon Press–Oxford, Oxford, 1988, 328 pp. | Zbl
[5] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 63 (1985), 1–64
[6] G. F. Helminck, E. A. Panasenko, “Geometric solutions of the strict KP hierarchy”, Theor. Math. Phys., 198:1 (2019), 48–68 | DOI | Zbl