Superpositional measurability of a multivalued function under generalized Сaratheodory conditions
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 305-314
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a multivalued mapping $F:[a,b]\times \mathbb{R}^{m}\to \mathrm{comp}(\mathbb{R}^{n})$, the problem of superpositional measurability and superpositional selectivity is considered. As it is known, for superpositional measurability it is sufficient that the mapping $ F $ satisfies the Caratheodory conditions, for superpositional selectivity it is sufficient that $ F (\cdot, x) $ has a measurable section and $F(t, \cdot)$ is upper semicontinuous. In this paper, we propose generalizations of these conditions based on the replacement, in the definitions of continuity and semicontinuity, of the limit of the sequence of coordinates of points in the images of multivalued mappings to a one-sided limit. It is shown that under such weakened conditions the multivalued mapping $ F $ possesses the required properties of superpositional measurability / superpositional selectivity. Illustrative examples are given, as well as examples of the significance of the proposed conditions. For single-valued mappings, the proposed conditions coincide with the generalized Caratheodory conditions proposed by I.V. Shragin (see [Bulletin of the Tambov University. Series: natural and technical sciences, 2014, 19:2, 476–478]).
Keywords: the Caratheodory condition, the Nemytsky multivalued operator, superpositional measurability, superpositional selectivity.
@article{VTAMU_2021_26_135_a6,
     author = {I. D. Serova},
     title = {Superpositional measurability of a multivalued function under generalized {{\CYRS}aratheodory} conditions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {305--314},
     year = {2021},
     volume = {26},
     number = {135},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/}
}
TY  - JOUR
AU  - I. D. Serova
TI  - Superpositional measurability of a multivalued function under generalized Сaratheodory conditions
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 305
EP  - 314
VL  - 26
IS  - 135
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/
LA  - ru
ID  - VTAMU_2021_26_135_a6
ER  - 
%0 Journal Article
%A I. D. Serova
%T Superpositional measurability of a multivalued function under generalized Сaratheodory conditions
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 305-314
%V 26
%N 135
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/
%G ru
%F VTAMU_2021_26_135_a6
I. D. Serova. Superpositional measurability of a multivalued function under generalized Сaratheodory conditions. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 305-314. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/

[1] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka Publ., Moscow, 1985 (In Russian)

[2] J. Warga, Optimal Control of Differential and Functional Equations, Academic press, New York; London, 1972 | Zbl

[3] A. I. Bulgakov, L. N. Lyapin, “On the connectedness of the solution sets of functional inclusions”, Math. USSR-Sb., 47:1 (1984), 287–292 | DOI | Zbl | Zbl

[4] A. I. Bulgakov, “Functional-differential inclusions with a nonconvex right-hand side conditions”, Differential Equations, 26:11 (1990), 1385–1391 | Zbl

[5] A. D. Ioffe, V. M. Tikhomirov, Theory of Extremal Problems, Nauka Publ., Moscow, 1974 (In Russian)

[6] A. V Arutyunov, Lectures on Convex and Multivalued Analysis, FIZMATLIT Publ., Moscow, 2014 (In Russian)

[7] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Introduction to the Theory of Multivalued Mappings and Differential Inclusions, LIBROKOM Publ., Moscow, 2011 (In Russian)

[8] A. I. Bulgakov, A. A. Grigorenko, E. A. Panasenko, “Perturbation of Volterra inclusions by impulse operator”, Izv. IMI UdGU, 1:39 (2012), 17–20 (In Russian) | Zbl

[9] E. O. Burlakov, E. S. Zhukovskii, “On well-posedness of generalized neural field equations with impulsive control”, Russian Mathematics, 60:5 (2016), 66–69 | DOI | Zbl

[10] A. Ponosov, E. Zhukovskii, “Generalized functional differential equations: existence and uniqueness of solutions”, Electronic Journal of Qualitative Theory of Differential Equations, 2016, no. 112, 1–19 | DOI

[11] E. S. Zhukovskiy, O. V. Skopintseva, “On well-posedness of differential equation with impulses on the given line”, Tambov University Reports. Series: Natural and Technical Sciences, 17:1 (2012), 45–48 (In Russian)

[12] I. V. Shragin, “Superpositional measurability under generalized Caratheodory conditions”, Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (In Russian)

[13] I. V. Shragin, “On $\sigma$-algebras related to the measurability of compositions”, Mathematical Notes, 80:6 (2006), 868–874 | DOI | Zbl

[14] E. S. Zhukovskiy, “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Math. J., 30:1 (2019), 73–94 | DOI | Zbl

[15] E. S. Zhukovskiy, “On ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | Zbl