@article{VTAMU_2021_26_135_a6,
author = {I. D. Serova},
title = {Superpositional measurability of a multivalued function under generalized {{\CYRS}aratheodory} conditions},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {305--314},
year = {2021},
volume = {26},
number = {135},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/}
}
TY - JOUR AU - I. D. Serova TI - Superpositional measurability of a multivalued function under generalized Сaratheodory conditions JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 305 EP - 314 VL - 26 IS - 135 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/ LA - ru ID - VTAMU_2021_26_135_a6 ER -
%0 Journal Article %A I. D. Serova %T Superpositional measurability of a multivalued function under generalized Сaratheodory conditions %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 305-314 %V 26 %N 135 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/ %G ru %F VTAMU_2021_26_135_a6
I. D. Serova. Superpositional measurability of a multivalued function under generalized Сaratheodory conditions. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 305-314. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a6/
[1] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka Publ., Moscow, 1985 (In Russian)
[2] J. Warga, Optimal Control of Differential and Functional Equations, Academic press, New York; London, 1972 | Zbl
[3] A. I. Bulgakov, L. N. Lyapin, “On the connectedness of the solution sets of functional inclusions”, Math. USSR-Sb., 47:1 (1984), 287–292 | DOI | Zbl | Zbl
[4] A. I. Bulgakov, “Functional-differential inclusions with a nonconvex right-hand side conditions”, Differential Equations, 26:11 (1990), 1385–1391 | Zbl
[5] A. D. Ioffe, V. M. Tikhomirov, Theory of Extremal Problems, Nauka Publ., Moscow, 1974 (In Russian)
[6] A. V Arutyunov, Lectures on Convex and Multivalued Analysis, FIZMATLIT Publ., Moscow, 2014 (In Russian)
[7] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Introduction to the Theory of Multivalued Mappings and Differential Inclusions, LIBROKOM Publ., Moscow, 2011 (In Russian)
[8] A. I. Bulgakov, A. A. Grigorenko, E. A. Panasenko, “Perturbation of Volterra inclusions by impulse operator”, Izv. IMI UdGU, 1:39 (2012), 17–20 (In Russian) | Zbl
[9] E. O. Burlakov, E. S. Zhukovskii, “On well-posedness of generalized neural field equations with impulsive control”, Russian Mathematics, 60:5 (2016), 66–69 | DOI | Zbl
[10] A. Ponosov, E. Zhukovskii, “Generalized functional differential equations: existence and uniqueness of solutions”, Electronic Journal of Qualitative Theory of Differential Equations, 2016, no. 112, 1–19 | DOI
[11] E. S. Zhukovskiy, O. V. Skopintseva, “On well-posedness of differential equation with impulses on the given line”, Tambov University Reports. Series: Natural and Technical Sciences, 17:1 (2012), 45–48 (In Russian)
[12] I. V. Shragin, “Superpositional measurability under generalized Caratheodory conditions”, Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (In Russian)
[13] I. V. Shragin, “On $\sigma$-algebras related to the measurability of compositions”, Mathematical Notes, 80:6 (2006), 868–874 | DOI | Zbl
[14] E. S. Zhukovskiy, “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Math. J., 30:1 (2019), 73–94 | DOI | Zbl
[15] E. S. Zhukovskiy, “On ordered-covering mappings and implicit differential inequalities”, Differential Equations, 52:12 (2016), 1539–1556 | DOI | Zbl