Symbols in berezin quantization for representation operators
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 296-304

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic notion of the Berezin quantization on a manifold $M$ is a correspondence which to an operator $A$ from a class assigns the pair of functions $F$ and $F^{\natural}$ defined on $M.$ These functions are called covariant and contravariant symbols of $A.$ We are interested in homogeneous space $M=G/H$ and classes of operators related to the representation theory. The most algebraic version of quantization — we call it the polynomial quantization — is obtained when operators belong to the algebra of operators corresponding in a representation $T$ of $G$ to elements $X$ of the universal enveloping algebra ${\rm Env}\, \mathfrak g$ of the Lie algebra $\mathfrak g$ of $G.$ In this case symbols turn out to be polynomials on the Lie algebra $\mathfrak g.$ In this paper we offer a new theme in the Berezin quantization on $G/H:$ as an initial class of operators we take operators corresponding to elements of the group $G$ itself in a representation $T$ of this group. In the paper we consider two examples, here homogeneous spaces are para-Hermitian spaces of rank 1 and 2: a) $G={\rm SL}(2,\mathbb R),$ $H$ — the subgroup of diagonal matrices, $G/H$ — a hyperboloid of one sheet in $\mathbb R^3;$ b) $G$ — the pseudoorthogonal group ${\rm SO}_0 (p,q),$ the subgroup $H$ covers with finite multiplicity the group ${\rm SO}_0 (p-1,q-1) \times {\rm SO}_0 (1,1);$ the space $G/H$ (a pseudo-Grassmann manifold) is an orbit in the Lie algebra $\mathfrak g$ of the group $G.$
Keywords: Lie groups and Lie algebras, representations of Lie groups, para-Hermitian symmetric spaces, covariant and contravariant symbols.
Mots-clés : pseudo-orthogonal groups, Berezin quantization
@article{VTAMU_2021_26_135_a5,
     author = {V. F. Molchanov and S. V. Tsykina},
     title = {Symbols in berezin quantization for representation operators},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {296--304},
     publisher = {mathdoc},
     volume = {26},
     number = {135},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a5/}
}
TY  - JOUR
AU  - V. F. Molchanov
AU  - S. V. Tsykina
TI  - Symbols in berezin quantization for representation operators
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 296
EP  - 304
VL  - 26
IS  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a5/
LA  - ru
ID  - VTAMU_2021_26_135_a5
ER  - 
%0 Journal Article
%A V. F. Molchanov
%A S. V. Tsykina
%T Symbols in berezin quantization for representation operators
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 296-304
%V 26
%N 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a5/
%G ru
%F VTAMU_2021_26_135_a5
V. F. Molchanov; S. V. Tsykina. Symbols in berezin quantization for representation operators. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 296-304. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a5/