Existence and stability of periodic solutions in a neural field equation
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 271-295

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence and linear stability of stationary periodic solutions to a neural field model, an intergo-differential equation of the Hammerstein type. Under the assumption that the activation function is a discontinuous step function and the kernel is decaying sufficiently fast, we formulate necessary and sufficient conditions for the existence of a special class of solutions that we call 1-bump periodic solutions. We then analyze the stability of these solutions by studying the spectrum of the Frechet derivative of the corresponding Hammerstein operator. We prove that the spectrum of this operator agrees up to zero with the spectrum of a block Laurent operator. We show that the non-zero spectrum consists of only eigenvalues and obtain an analytical expression for the eigenvalues and the eigenfunctions. The results are illustrated by multiple examples.
Keywords: nonlinear integral equations, sigmoid type nonlinearities, neural field model, periodic solutions, block Laurent operators.
@article{VTAMU_2021_26_135_a4,
     author = {K. Kolodina and V. V. Kostrykin and A. Oleynik},
     title = {Existence and stability of periodic solutions in a neural field equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {271--295},
     publisher = {mathdoc},
     volume = {26},
     number = {135},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/}
}
TY  - JOUR
AU  - K. Kolodina
AU  - V. V. Kostrykin
AU  - A. Oleynik
TI  - Existence and stability of periodic solutions in a neural field equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 271
EP  - 295
VL  - 26
IS  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/
LA  - en
ID  - VTAMU_2021_26_135_a4
ER  - 
%0 Journal Article
%A K. Kolodina
%A V. V. Kostrykin
%A A. Oleynik
%T Existence and stability of periodic solutions in a neural field equation
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 271-295
%V 26
%N 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/
%G en
%F VTAMU_2021_26_135_a4
K. Kolodina; V. V. Kostrykin; A. Oleynik. Existence and stability of periodic solutions in a neural field equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 271-295. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/