@article{VTAMU_2021_26_135_a4,
author = {K. Kolodina and V. V. Kostrykin and A. Oleynik},
title = {Existence and stability of periodic solutions in a neural field equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {271--295},
year = {2021},
volume = {26},
number = {135},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/}
}
TY - JOUR AU - K. Kolodina AU - V. V. Kostrykin AU - A. Oleynik TI - Existence and stability of periodic solutions in a neural field equation JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 271 EP - 295 VL - 26 IS - 135 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/ LA - en ID - VTAMU_2021_26_135_a4 ER -
%0 Journal Article %A K. Kolodina %A V. V. Kostrykin %A A. Oleynik %T Existence and stability of periodic solutions in a neural field equation %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 271-295 %V 26 %N 135 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/ %G en %F VTAMU_2021_26_135_a4
K. Kolodina; V. V. Kostrykin; A. Oleynik. Existence and stability of periodic solutions in a neural field equation. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 271-295. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a4/
[1] Shun-ichi Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biological Cybernetics, 27:2 (1977), 77–87 | DOI | Zbl
[2] S. Coombes, “Waves, bumps, and patterns in neural field theories”, Biological Cybernetics, 93:2 (2005), 91–108 | DOI | Zbl
[3] B. Ermentrout, “Neural networks as spatio-temporal pattern-forming systems”, Reports on Progress in Physics, 61:4 (1998), 353–430 | DOI
[4] S. Coombes, P. Beim Graben, R. Potthast, J. Wright, Neural Fields: Theory and Applications, Springer, 2014 | Zbl
[5] R. Potthast, P. Beim Graben, “Existence and properties of solutions for neural field equations”, Mathematical Methods in the Applied Sciences, 33:8 (2010), 935–949 | Zbl
[6] B. Ermentrout, “The analysis of synaptically generated traveling waves”, Journal of Computational Neuroscience, 5:2 (1998), 191–208 | DOI | Zbl
[7] S. Coombes, H. Schmidt, “Neural fields with sigmoidal firing rates: approximate solutions”, Discrete and Continuous Dynamical Systems, 28:4, Trends and Developments in DE/Dynamics (2010), 1369–1379 | DOI | Zbl
[8] E. P. Krisner, “Periodic solutions of a one dimensional wilson-cowan type model”, Electronic Journal of Differential Equations, 102 (2007), 1–22
[9] C. R. Laing, W. C. Troy, B. Gutkin, B. Ermentrout, “Multiple bumps in a neuronal model of working memory”, SIAM Journal on Applied Mathematics, 63:1 (2002), 62–97 | DOI | Zbl
[10] A. Oleynik, A. Ponosov, V. Kostrykin, A. V. Sobolev, “Spatially localized solutions of the hammerstein equation with sigmoid type of nonlinearity”, Journal of Differential Equations, 261:10 (2016), 5844–5874 | DOI | Zbl
[11] A. J. Elvin, C. R. Laing, R. I. McLachlan, M. G. Roberts, “Exploiting the hamiltonian structure of a neural field model”, Physica D: Nonlinear Phenomena, 239:9 (2010), 537–546 | DOI | Zbl
[12] L. P. Šil'Nikov, “A case of the existence of a denumerable set of periodic motions”, Sov. Math. Dokl., 6 (1965), 163–166
[13] L. P. Šil'Nikov, “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type”, Mathematics of the USSR-Sbornik, 10:1 (1970), 91 | DOI
[14] P. Glendinning, C. Sparrow, “Local and global behavior near homoclinic orbits”, Journal of Statistical Physics, 35:5 (1984), 645–696 | DOI | Zbl
[15] R. L. Devaney, “Homoclinic orbits in hamiltonian systems”, Journal of Differential Equations, 21:2 (1976), 431–438 | DOI | Zbl
[16] Paul C. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2011), 033001
[17] J. Wyller, P. Blomquist, G. T. Einevoll, “Turing instability and pattern formation in a two-population neuronal network model”, Physica D: Nonlinear Phenomena, 225:1 (2007), 75–93 | DOI | Zbl
[18] E. P. Krisner, “The link between integral equations and higher order odes”, Journal of Mathematical Analysis and Applications, 291:1 (2004), 165–179 | DOI | Zbl
[19] S. Coombes, M. R. Owen, “Evans functions for integral neural field equations with heaviside firing rate function”, SIAM Journal on Applied Dynamical Systems, 3:4 (2004), 574–600 | DOI | Zbl
[20] P. Blomquist, J. Wyller, G. T. Einevoll, “Localized activity patterns in two-population neuronal networks”, Physica D: Nonlinear Phenomena, 206:3 (2005), 180–212 | DOI | Zbl
[21] A. Oleynik, J. Wyller, T. Tetzlaff, G. T. Einevoll, “Stability of bumps in a two-population neural-field model with quasi-power temporal kernels”, Nonlinear Analysis: Real World applications, 12:6 (2011), 3073–3094 | DOI | Zbl
[22] E. Burlakov, A. Ponosov, J. Wyller, “Stationary solutions of continuous and discontinuous neural field equations”, Journal of Mathematical Analysis and Applications, 444:1 (2016), 47–68 | DOI | Zbl
[23] A. Oleynik, V. Kostrykin, A. Sobolev, “Lyapunov Stability of Bumps in of One-Population Neural Field Equation”, Work in Progress, 2015
[24] A. Oleynik, A. Ponosov, J. Wyller, “On the properties of nonlinear nonlocal operators arising in neural field models”, Journal of Mathematical Analysis and Applications, 398:1 (2013), 335–351 | DOI | Zbl
[25] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, v. 63, Birkhäuser, Basel–Boston–Berlin, 2013
[26] A. Frazho, W. Bhosri, An Operator Perspective on Signals and Systems, v. 204, Operator Theory: Advances and Applications, Birkhäuser, Basel–Boston–Berlin, 2010, 429 pp. | Zbl
[27] C. V. M. van der Mee, S. Seatzu, G. Rodriguez, “Spectral factorization of bi-infinite multi-index block Toeplitz matrices”, Linear Algebra and its Applications, 343 (2002), 355–380 | Zbl
[28] L. Reichel, L. N. Trefethen, “Eigenvalues and pseudo-eigenvalues of Toeplitz matrices”, Linear Algebra and its Applications, 162 (1992), 153–185 | DOI | Zbl
[29] R. Denk, M. Möller, C. Tretter, “The Spectrum of the Multiplication Operator Associated with a Family of Operators in a Banach Space”, Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems, v. 162, Operator Theory: Advances and Applications, Birkhäuser, Basel–Boston–Berlin, 2005, 103–116
[30] O. Toeplitz, “Zur theorie der quadratischen und bilinearen formen vonunendlichvielen veränderlichen”, Mathematische Annalen, 70:3 (1911), 351–376 | DOI | Zbl
[31] M. Lindner, “Fredholmness and index of operators in the wiener algebra are independednt on the underlying space”, Operators and Matrices, 2:2 (2008), 297–306 | DOI | Zbl
[32] M. Seidel, “Fredholm theory for band-dominated and related operators: a survey”, Linear Algebra and its Applications, 445 (2014), 373–394 | DOI | Zbl
[33] V. Kostrykin, A. Oleynik, “On the existence of unstable bumps in neural networks”, Integral Equations and Operator Theory, 75:4 (2013), 445–458 | DOI | Zbl