@article{VTAMU_2021_26_135_a3,
author = {M. I. Kamenskii and V. V. Obukhovskii and G. Petrosyan},
title = {On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in {Banach} spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {250--270},
year = {2021},
volume = {26},
number = {135},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/}
}
TY - JOUR AU - M. I. Kamenskii AU - V. V. Obukhovskii AU - G. Petrosyan TI - On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 250 EP - 270 VL - 26 IS - 135 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/ LA - ru ID - VTAMU_2021_26_135_a3 ER -
%0 Journal Article %A M. I. Kamenskii %A V. V. Obukhovskii %A G. Petrosyan %T On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 250-270 %V 26 %N 135 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/ %G ru %F VTAMU_2021_26_135_a3
M. I. Kamenskii; V. V. Obukhovskii; G. Petrosyan. On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 250-270. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/
[1] S. G. Samco, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publ., Amsterdam, 1993
[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North–Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006 | Zbl
[3] F. Mainardi, S. Rionero, T. Ruggeri, “On the initial value problem for the fractional diffusionwave equation”, Waves and Stability in Continuous Media, 1994, 246–251
[4] M. Afanasova, Y. Ch. Liou, V. Obukhoskii, G. Petrosyan, “On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, Journal of Nonlinear and Convex Analysis, 20:9 (2019), 1919–1935
[5] J. Appell, B. Lopez, K. Sadarangani, “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, J. Nonlinear Var. Anal., 2018, no. 2, 25–33 | Zbl
[6] T. D. Ke, N. V. Loi, V. Obukhovskii, “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 2015, no. 18, 531–553 | Zbl
[7] M. S. Afanasova, G. G. Petrosyan, “O kraevoi zadache dlya funktsionalno-differentsialnogo vklyucheniya drobnogo poryadka s obobschennym nachalnym usloviem v banakhovom prostranstve”, Izvestiya vuzov. Matematika, 2019, no. 9, 3–15 | Zbl
[8] I. Benedetti, V. Obukhovskii, V. Taddei, “On generalized boundary value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal., 2017, no. 20, 1424–1446 | DOI | Zbl
[9] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 97:4 (2018), 571–591 | DOI | Zbl
[10] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On a Periodic Boundary Value Problem for a Fractional–Order Semilinear Functional Differential Inclusions in a Banach Space”, Mathematics, 7:12, Special Issue “Fixed Point, Optimization, and Applications” (2019), 5–19 | DOI
[11] G. G. Petrosyan, “Ob antiperiodicheskoi kraevoi zadache dlya polulineinogo differentsialnogo vklyucheniya drobnogo poryadka s otklonyayuschimsya argumentom v banakhovom prostranstve”, Ufimskii matematicheskii zhurnal, 12:3 (2020), 71–82 | Zbl
[12] R. Agarwal, B. Ahmad, “Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions”, Comput. Math. Appl., 2011, no. 62, 1200–1214 | DOI | Zbl
[13] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Existence and Approximation of Solutions to Nonlocal Boundary Value Problems for Fractional Differential Inclusions”, Fixed Point Theory and Applications, 2019, no. 2, 1–21
[14] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory and Applications, 28:4 (2017), 1–28
[15] M. Belmekki, J. J. Nieto, R. Rodriguez–Lopez, “Existence of periodic solution for a nonlinear fractional differential equation”, Boundary Value Problems, 2009 (2009), 324561, 18 pp. | DOI
[16] M. Belmekki, J. J. Nieto, R. Rodriguez–Lopez, “Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2014), 1–27 | DOI
[17] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, Springer–Verlag, Berlin–Heidelberg, 2014 | Zbl
[18] V. M. Bogdan, Generalized Vectorial Lebesgue and Bochner Integration Theory, 2010, arXiv: 1006.3881v1
[19] G. M. Fichtengolts, Course in Differential and Integral Calculus, v. 1, Fizmatlit Publ., Moscow, 2006 (In Russian)
[20] M. I. Kamenskii, V. V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New–York, 2001
[21] V. V. Obukhovskii, B. Gelman, Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020 | Zbl
[22] J. Diestel, W. M. Ruess, W. Schachermayer, “On weak compactness in $L^1(\mu, X)$”, Proc. Amer. Math. Soc., 1993, no. 118, 447–453 | Zbl