On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 250-270
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study a periodic boundary value problem for a class of semilinear differential inclusions of fractional order in a Banach space for which the multivalued nonlinearity satisfies the regularity condition expressed in terms of measures of noncompactness. To prove the existence of solutions to the problem, we first construct the corresponding Green function. Then we introduce into consideration a multivalued resolving operator in the space of continuous functions and reduce the posed problem to the existence of fixed points of the resolving multioperator. To prove the existence of a fixed point, a generalized theorem of B.N. Sadovskii type for a condensing multivalued map is used.
Keywords: differential inclusion, fractional derivative, Green's function, condensing multioperator, measure of noncompactness, fixed point.
@article{VTAMU_2021_26_135_a3,
     author = {M. I. Kamenskii and V. V. Obukhovskii and G. Petrosyan},
     title = {On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in {Banach} spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {250--270},
     year = {2021},
     volume = {26},
     number = {135},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/}
}
TY  - JOUR
AU  - M. I. Kamenskii
AU  - V. V. Obukhovskii
AU  - G. Petrosyan
TI  - On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 250
EP  - 270
VL  - 26
IS  - 135
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/
LA  - ru
ID  - VTAMU_2021_26_135_a3
ER  - 
%0 Journal Article
%A M. I. Kamenskii
%A V. V. Obukhovskii
%A G. Petrosyan
%T On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 250-270
%V 26
%N 135
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/
%G ru
%F VTAMU_2021_26_135_a3
M. I. Kamenskii; V. V. Obukhovskii; G. Petrosyan. On the existence of a solution for a periodic boundary value problem for semilinear fractional-order differential inclusions in Banach spaces. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 250-270. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a3/

[1] S. G. Samco, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publ., Amsterdam, 1993

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North–Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006 | Zbl

[3] F. Mainardi, S. Rionero, T. Ruggeri, “On the initial value problem for the fractional diffusionwave equation”, Waves and Stability in Continuous Media, 1994, 246–251

[4] M. Afanasova, Y. Ch. Liou, V. Obukhoskii, G. Petrosyan, “On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, Journal of Nonlinear and Convex Analysis, 20:9 (2019), 1919–1935

[5] J. Appell, B. Lopez, K. Sadarangani, “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, J. Nonlinear Var. Anal., 2018, no. 2, 25–33 | Zbl

[6] T. D. Ke, N. V. Loi, V. Obukhovskii, “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 2015, no. 18, 531–553 | Zbl

[7] M. S. Afanasova, G. G. Petrosyan, “O kraevoi zadache dlya funktsionalno-differentsialnogo vklyucheniya drobnogo poryadka s obobschennym nachalnym usloviem v banakhovom prostranstve”, Izvestiya vuzov. Matematika, 2019, no. 9, 3–15 | Zbl

[8] I. Benedetti, V. Obukhovskii, V. Taddei, “On generalized boundary value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal., 2017, no. 20, 1424–1446 | DOI | Zbl

[9] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 97:4 (2018), 571–591 | DOI | Zbl

[10] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On a Periodic Boundary Value Problem for a Fractional–Order Semilinear Functional Differential Inclusions in a Banach Space”, Mathematics, 7:12, Special Issue “Fixed Point, Optimization, and Applications” (2019), 5–19 | DOI

[11] G. G. Petrosyan, “Ob antiperiodicheskoi kraevoi zadache dlya polulineinogo differentsialnogo vklyucheniya drobnogo poryadka s otklonyayuschimsya argumentom v banakhovom prostranstve”, Ufimskii matematicheskii zhurnal, 12:3 (2020), 71–82 | Zbl

[12] R. Agarwal, B. Ahmad, “Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions”, Comput. Math. Appl., 2011, no. 62, 1200–1214 | DOI | Zbl

[13] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “Existence and Approximation of Solutions to Nonlocal Boundary Value Problems for Fractional Differential Inclusions”, Fixed Point Theory and Applications, 2019, no. 2, 1–21

[14] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory and Applications, 28:4 (2017), 1–28

[15] M. Belmekki, J. J. Nieto, R. Rodriguez–Lopez, “Existence of periodic solution for a nonlinear fractional differential equation”, Boundary Value Problems, 2009 (2009), 324561, 18 pp. | DOI

[16] M. Belmekki, J. J. Nieto, R. Rodriguez–Lopez, “Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2014), 1–27 | DOI

[17] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, Springer–Verlag, Berlin–Heidelberg, 2014 | Zbl

[18] V. M. Bogdan, Generalized Vectorial Lebesgue and Bochner Integration Theory, 2010, arXiv: 1006.3881v1

[19] G. M. Fichtengolts, Course in Differential and Integral Calculus, v. 1, Fizmatlit Publ., Moscow, 2006 (In Russian)

[20] M. I. Kamenskii, V. V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New–York, 2001

[21] V. V. Obukhovskii, B. Gelman, Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020 | Zbl

[22] J. Diestel, W. M. Ruess, W. Schachermayer, “On weak compactness in $L^1(\mu, X)$”, Proc. Amer. Math. Soc., 1993, no. 118, 447–453 | Zbl