Eckland and Bishop-Phelps variational principles in partially ordered spaces
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 234-240
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, an assertion about the minimum of the graph of a mapping acting in partially ordered spaces is obtained. The proof of this statement uses the theorem on the minimum of a mapping in a partially ordered space from [A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy. Caristi-like condition and the existence of minima of mappings in partially ordered spaces // Journal of Optimization Theory and Applications. 2018. V. 180. Iss. 1, 48–61]. It is also shown that this statement is an analogue of the Eckland and Bishop–Phelps variational principles which are effective tools for studying extremal problems for functionals defined on metric spaces. Namely, the statement obtained in this paper and applied to a partially ordered space created from a metric space by introducing analogs of the Bishop–Phelps order relation, is equivalent to the classical Eckland and Bishop–Phelps variational principles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
partially ordered space, Caristi-like inequality, infimum of a functional.
Mots-clés : variational principles
                    
                  
                
                
                Mots-clés : variational principles
@article{VTAMU_2021_26_135_a1,
     author = {Z. T. Zhukovskaya and T. V. Zhukovskaya and O. V. Filippova},
     title = {Eckland and {Bishop-Phelps} variational principles in partially ordered spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {234--240},
     publisher = {mathdoc},
     volume = {26},
     number = {135},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/}
}
                      
                      
                    TY - JOUR AU - Z. T. Zhukovskaya AU - T. V. Zhukovskaya AU - O. V. Filippova TI - Eckland and Bishop-Phelps variational principles in partially ordered spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 234 EP - 240 VL - 26 IS - 135 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/ LA - ru ID - VTAMU_2021_26_135_a1 ER -
%0 Journal Article %A Z. T. Zhukovskaya %A T. V. Zhukovskaya %A O. V. Filippova %T Eckland and Bishop-Phelps variational principles in partially ordered spaces %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 234-240 %V 26 %N 135 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/ %G ru %F VTAMU_2021_26_135_a1
Z. T. Zhukovskaya; T. V. Zhukovskaya; O. V. Filippova. Eckland and Bishop-Phelps variational principles in partially ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 234-240. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/