Mots-clés : variational principles
@article{VTAMU_2021_26_135_a1,
author = {Z. T. Zhukovskaya and T. V. Zhukovskaya and O. V. Filippova},
title = {Eckland and {Bishop-Phelps} variational principles in partially ordered spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {234--240},
year = {2021},
volume = {26},
number = {135},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/}
}
TY - JOUR AU - Z. T. Zhukovskaya AU - T. V. Zhukovskaya AU - O. V. Filippova TI - Eckland and Bishop-Phelps variational principles in partially ordered spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2021 SP - 234 EP - 240 VL - 26 IS - 135 UR - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/ LA - ru ID - VTAMU_2021_26_135_a1 ER -
%0 Journal Article %A Z. T. Zhukovskaya %A T. V. Zhukovskaya %A O. V. Filippova %T Eckland and Bishop-Phelps variational principles in partially ordered spaces %J Vestnik rossijskih universitetov. Matematika %D 2021 %P 234-240 %V 26 %N 135 %U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/ %G ru %F VTAMU_2021_26_135_a1
Z. T. Zhukovskaya; T. V. Zhukovskaya; O. V. Filippova. Eckland and Bishop-Phelps variational principles in partially ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 135, pp. 234-240. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_135_a1/
[1] I. Ekeland, “Nonconvex minimization problems”, Bulletin of the American Mathematical Society. New Series, 1:3 (1979), 443–474 | DOI | Zbl
[2] A. Granas, J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer–Verlag, New York, 2003, 690 pp. | DOI | Zbl
[3] A. V. Arutyunov, S. E. Zhukovskiy, “Variational Principles in Nonlinear Analysis and Their Generalization”, Mathematical Notes, 103:6 (2018), 1014–1019 | DOI | Zbl
[4] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proc. Steklov Inst. Math., 291 (2015), 24–37 | DOI | Zbl
[5] J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | Zbl
[6] Z. T. Zhukovskaya, S. E. Zhukovskiy, “On generalizations and applications of variational principles of nonlinear analysis”, Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018), 377–385 (In Russian)
[7] A. V. Arutyunov, B. D. Gel’man, E. S. Zhukovskiy, S. E. Zhukovskiy, “Caristi-like condition. Existence of solutions to equations and minima of functions in metric spaces”, Fixed Point Theory, 20:1 (2019), 31–58 | DOI | Zbl
[8] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Caristi-like condition and the existence of minima of mappings in partially ordered spaces”, Journal of Optimization Theory and Applications, 180:1 (2019), 48–61 | DOI | Zbl
[9] F. Clark, Optimization and Nonsmooth Analysis, Nauka Publ., Moscow, 1988 (In Russian)