@article{VTAMU_2021_26_133_a7,
author = {A. G. Chentsov},
title = {Maximal linked systems on families of measurable rectangles},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {77--104},
year = {2021},
volume = {26},
number = {133},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a7/}
}
A. G. Chentsov. Maximal linked systems on families of measurable rectangles. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 77-104. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a7/
[1] A. G. Chentsov, “Bitopologicheskie prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. IMM UrO RAN, 24, no. 1, 2018, 257–272 ; A. G. Chentsov, “Bitopological spaces of ultrafilters and maximal linked systems”, Proc. Steklov Inst. Math. (Suppl.), 305, no. suppl. 1 (2019), S24–S39 | DOI | MR | Zbl
[2] A. G. Chentsov, “Ultrafilters and maximal linked systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 365–388 (In Russian) | MR | Zbl
[3] A. G. Chentsov, “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 240–257 (In Russian)
[4] J. de Groot, “Superextensions and supercompactness”, Extension Theory of Topological Structures and its Applications, I International Symposium “Extension Theory of Topological Structures and its Applications” (Berlin, 1969), Proceedings of the Symposium, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR
[5] J. van Mill, Supercompactness and Wallman spaces, Mathematical Centre Tracts, 85, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl
[6] M. Strok, A. Szymanski, “Compact metric spaces have binary subbases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl
[7] V. V. Fedorchuk, V. V. Filippov, General Topology. Basic Constructions, Fizmatlit Publ., Moscow, 2006, 336 pp. (In Russian)
[8] A. V. Arkhangel'skii, “Compactness”, General topology – 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 50, VINITI, Moscow, 1989, 5–128 (In Russian)
[9] A. V. Bulinskiy, A. N. Shiryaev, Theory of Stochastic Processes, Fizmatlit, M., 2005, 402 pp. (In Russian)
[10] A. G. Chentsov, “K voprosu o predstavlenii ultrafiltrov v proizvedenii izmerimykh prostranstv”, Tr. IMM UrO RAN, 19, no. 2, 2013, 307–319 ; Proc. Steklov Inst. Math. (Suppl.), 284, no. suppl. 1 (2014), 65–78 | DOI | MR
[11] A. G. Chentsov, Elements of Finitely Additive Measure Theory, v. II, Ural State Technical University - UPI, Yekaterinburg, 2010, 541 pp. (In Russian)
[12] K. Kuratovsky, A. Mostovsky, Set Theory, Mir Publ., Moscow, 1970, 416 pp. (In Russian) | MR
[13] J. Warga, Optimal Control of Differential and Functional Equations, Science, Moscow, 1977, 624 pp. (In Russian)
[14] J. Neve, Mathematical Foundations of Probability Theory, Mir Publ., Moscow, 1969, 309 pp. (In Russian)
[15] A. G. Chentsov, “Filters and linked families of sets”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020), 444–467 (In Russian) | MR
[16] A. G. Chentsov, “On the supercompactness of ultrafilter space with the topology of Wallman type”, Izv. IMI UdGU, 54 (2019), 74–101 (In Russian) | Zbl
[17] V. I. Bogachev, Weak Convergence of Measures, Institute for Computer Research, Moscow–Izhevsk, 2016, 396 pp. (In Russian) | MR
[18] R. Engelking, General Topology, Mir Publ., Moscow, 1986, 751 pp. (In Russian) | MR
[19] A. G. Chentsov, S. I. Morina, Extensions and Relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl
[20] N. Burbaki, General Topology. Basic Structures, Nauka Publ., Moscow, 1968, 272 pp. (In Russian)
[21] R. A. Alexandryan, E. A. Mirzakhanyan, General Topology, High School Publ., Moscow, 1979, 336 pp. (In Russian)