On application of the $i$-smooth analysis methodology to elaboration of numerical methods for solving functional differential equations
Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 26-34
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article discusses a number of aspects of the application of $i$-smooth analysis in the development of numerical methods for solving functional differential equations (FDE). The principle of separating finite- and infinite-dimensional components in the structure of numerical schemes for FDE is demonstrated with concrete examples, as well as the usage of different types of prehistory interpolation, those by Lagrange and Hermite. A general approach to constructing Runge–Kutta-like numerical methods for nonlinear neutral differential equations is presented. Convergence conditions are obtained and the order of convergence of such methods is established.
Keywords: functional differential equations; numerical methods; $i$-smooth analysis; systems with delays.
@article{VTAMU_2021_26_133_a2,
     author = {A. V. Kim},
     title = {On application of the $i$-smooth analysis methodology to~elaboration of numerical methods for solving functional~differential~equations},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {26--34},
     year = {2021},
     volume = {26},
     number = {133},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a2/}
}
TY  - JOUR
AU  - A. V. Kim
TI  - On application of the $i$-smooth analysis methodology to elaboration of numerical methods for solving functional differential equations
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2021
SP  - 26
EP  - 34
VL  - 26
IS  - 133
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a2/
LA  - ru
ID  - VTAMU_2021_26_133_a2
ER  - 
%0 Journal Article
%A A. V. Kim
%T On application of the $i$-smooth analysis methodology to elaboration of numerical methods for solving functional differential equations
%J Vestnik rossijskih universitetov. Matematika
%D 2021
%P 26-34
%V 26
%N 133
%U http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a2/
%G ru
%F VTAMU_2021_26_133_a2
A. V. Kim. On application of the $i$-smooth analysis methodology to elaboration of numerical methods for solving functional differential equations. Vestnik rossijskih universitetov. Matematika, Tome 26 (2021) no. 133, pp. 26-34. http://geodesic.mathdoc.fr/item/VTAMU_2021_26_133_a2/

[1] A. V. Kim, V. G. Pimenov, Numerical Methods for Delay Differential Equations. Application of $i$-Smooth Analysis, v. 44, Lecture Notes Series, Research Institute of Mathematics. Global Analysis Research Center. Seoul National Univertsity, Seoul, 1999 | MR

[2] A. V. Kim, V. G. Pimenov, $i$-Smooth Analysis and Numerical Methods for Solving Functional Differential Equations, Research and Publishing Center “Regular and Chaotic Dynamics”, Moscow–Izhevsk, 2004, 256 pp. (In Russian)

[3] A. V. Kim, $i$-Smooth Analysis. Theory and Applications, Wiley Publ., New Jersey, 2015 | MR | Zbl

[4] A. V. Kim, The Direct Lyapunov Method in the Theory of Stability of Systems with Aftereffect, Ural State University Publ., Yekaterinburg, 1992 (In Russian)

[5] A. V. Kim, $i$-Smooth Analysis and Functional Differential Equations, IMM UB RAS, Yekaterinburg, 1996, 234 pp. (In Russian)

[6] A. V. Kim, “The solution of nonlinear boundary value problems for ordinary differential equations”, Differ. Uravn., 23:9 (1987), 1504–1510 (In Russian)

[7] Guang-Da Hu, “Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays”, Kybernetika, 54:4 (2018), 718–735 | MR | Zbl

[8] A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003 | MR

[9] F. Ismail, R. Ali Al-Khasa, A. San Lwin, M. Suleiman, “Numerical treatment of delay differential equations by Runge-Kutta methods using hermite interpolation”, Matematika, 18 (2002), 79–90

[10] V. B. Kolmanovskii, V. R. Nosov, Stability of Functional Differential Equations, Academic Publ., London, 1986 | MR | Zbl

[11] A. A. Samarskiy, A. V. Gulin, Numerical Methods, Nauka Publ., Moscow, 1989