Controlled differential equations with a parameter and with multivalued impulses
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Cauchy problem for a controlled differential system with a parameter which is an element of some metric space $\Xi$ containing phase constraints on the control. It is assumed that at the given time instants $t_{k},$ $k=1,2,\ldots, p,$ the solution $x$ is continuous from the left and suffers a discontinuity, the value of which is $x(t_k + 0)-x(t_k),$ belongs to some non-empty compact set of the space $\mathbb{R}^{n}.$ The notions of an admissible pair of this controlled impulsive system are introduced. The questions of continuity of admissible pairs are considered. Definitions of a priori boundedness and a priori collective boundedness on a given set $S \times K$ (where $S\subset \mathbb{R}^n $ is a set of initial values, $K \subset \Xi$ is a set of parameter values) of the set of phase trajectories are considered. It is proved that if at some point $(x_0, \xi) \in \mathbb{R}^n \times \Xi $ the set of phase trajectories is a priori bounded, then it will be a priori bounded in some neighborhood of this point.
Keywords:
controlled differential system, Cauchy problem, multivalued impulses, differential inclusion, a priori boundedness.
@article{VTAMU_2020_25_132_a7,
author = {O. V. Filippova},
title = {Controlled differential equations with a parameter and with multivalued impulses},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {441--447},
publisher = {mathdoc},
volume = {25},
number = {132},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/}
}
TY - JOUR AU - O. V. Filippova TI - Controlled differential equations with a parameter and with multivalued impulses JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 441 EP - 447 VL - 25 IS - 132 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/ LA - ru ID - VTAMU_2020_25_132_a7 ER -
O. V. Filippova. Controlled differential equations with a parameter and with multivalued impulses. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/