Controlled differential equations with a parameter and with multivalued impulses
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Cauchy problem for a controlled differential system with a parameter which is an element of some metric space $\Xi$ containing phase constraints on the control. It is assumed that at the given time instants $t_{k},$ $k=1,2,\ldots, p,$ the solution $x$ is continuous from the left and suffers a discontinuity, the value of which is $x(t_k + 0)-x(t_k),$ belongs to some non-empty compact set of the space $\mathbb{R}^{n}.$ The notions of an admissible pair of this controlled impulsive system are introduced. The questions of continuity of admissible pairs are considered. Definitions of a priori boundedness and a priori collective boundedness on a given set $S \times K$ (where $S\subset \mathbb{R}^n $ is a set of initial values, $K \subset \Xi$ is a set of parameter values) of the set of phase trajectories are considered. It is proved that if at some point $(x_0, \xi) \in \mathbb{R}^n \times \Xi $ the set of phase trajectories is a priori bounded, then it will be a priori bounded in some neighborhood of this point.
Keywords: controlled differential system, Cauchy problem, multivalued impulses, differential inclusion, a priori boundedness.
@article{VTAMU_2020_25_132_a7,
     author = {O. V. Filippova},
     title = {Controlled differential equations with a parameter and with multivalued impulses},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {441--447},
     year = {2020},
     volume = {25},
     number = {132},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/}
}
TY  - JOUR
AU  - O. V. Filippova
TI  - Controlled differential equations with a parameter and with multivalued impulses
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 441
EP  - 447
VL  - 25
IS  - 132
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/
LA  - ru
ID  - VTAMU_2020_25_132_a7
ER  - 
%0 Journal Article
%A O. V. Filippova
%T Controlled differential equations with a parameter and with multivalued impulses
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 441-447
%V 25
%N 132
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/
%G ru
%F VTAMU_2020_25_132_a7
O. V. Filippova. Controlled differential equations with a parameter and with multivalued impulses. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/

[1] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Vvedeniye v Teoriyu Mnogoznachnykh Otobrazheniy i Differentsial'nykh Vklyucheniy, LIBROKOM, M., 2016 (In Russian)

[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 2007 ; A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. I, Dover Publications, Mineola, New York, 1957; v. II, 1961 | MR | MR

[3] A. V. Arutyunov, Lektsii po Vypuklomu i Mnogoznachnomu Analizu, FIZMATLIT, M., 2014 (In Russian)

[4] A. I. Bulgakov, O. V. Filippova, “The functional differential inclusions with impulses and with the right-hand side not necessarily convex-valued with respect to switching”, Proceedings of the Institute of Mathematics and Computer Science Udmurt State University, 14 (2014), 3-48 (In Russian) | Zbl

[5] A. I. Bulgakov, E. V. Korchagina, O. V. Filippova, “Functional-differential inclusions with impulses. Part 1-6.”, Tambov University Reports. Series: Natural and Technical Sciences, 14:6 (2009), 1275-1313 (In Russian)

[6] A.I. Bulgakov, “K voprosu suschestvovaniya nepreryvnykh vetvei u mnogoznachnykh otobrazhenii s nevypuklymi obrazami v prostranstvakh summiruemykh funktsii”, Matematicheskii sbornik, 136:2 (1988), 292-300 ; A. I. Bulgakov, “On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions”, Math. USSR-Sb, 64:1 (1989), 295-303 | Zbl | DOI | MR | Zbl