Controlled differential equations with a parameter and with multivalued impulses
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Cauchy problem for a controlled differential system with a parameter which is an element of some metric space $\Xi$ containing phase constraints on the control. It is assumed that at the given time instants $t_{k},$ $k=1,2,\ldots, p,$ the solution $x$ is continuous from the left and suffers a discontinuity, the value of which is $x(t_k + 0)-x(t_k),$ belongs to some non-empty compact set of the space $\mathbb{R}^{n}.$ The notions of an admissible pair of this controlled impulsive system are introduced. The questions of continuity of admissible pairs are considered. Definitions of a priori boundedness and a priori collective boundedness on a given set $S \times K$ (where $S\subset \mathbb{R}^n $ is a set of initial values, $K \subset \Xi$ is a set of parameter values) of the set of phase trajectories are considered. It is proved that if at some point $(x_0, \xi) \in \mathbb{R}^n \times \Xi $ the set of phase trajectories is a priori bounded, then it will be a priori bounded in some neighborhood of this point.
Keywords: controlled differential system, Cauchy problem, multivalued impulses, differential inclusion, a priori boundedness.
@article{VTAMU_2020_25_132_a7,
     author = {O. V. Filippova},
     title = {Controlled differential equations with a parameter and with multivalued impulses},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {441--447},
     publisher = {mathdoc},
     volume = {25},
     number = {132},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/}
}
TY  - JOUR
AU  - O. V. Filippova
TI  - Controlled differential equations with a parameter and with multivalued impulses
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 441
EP  - 447
VL  - 25
IS  - 132
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/
LA  - ru
ID  - VTAMU_2020_25_132_a7
ER  - 
%0 Journal Article
%A O. V. Filippova
%T Controlled differential equations with a parameter and with multivalued impulses
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 441-447
%V 25
%N 132
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/
%G ru
%F VTAMU_2020_25_132_a7
O. V. Filippova. Controlled differential equations with a parameter and with multivalued impulses. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/