@article{VTAMU_2020_25_132_a7,
author = {O. V. Filippova},
title = {Controlled differential equations with a parameter and with multivalued impulses},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {441--447},
year = {2020},
volume = {25},
number = {132},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/}
}
TY - JOUR AU - O. V. Filippova TI - Controlled differential equations with a parameter and with multivalued impulses JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 441 EP - 447 VL - 25 IS - 132 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/ LA - ru ID - VTAMU_2020_25_132_a7 ER -
O. V. Filippova. Controlled differential equations with a parameter and with multivalued impulses. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 441-447. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a7/
[1] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Vvedeniye v Teoriyu Mnogoznachnykh Otobrazheniy i Differentsial'nykh Vklyucheniy, LIBROKOM, M., 2016 (In Russian)
[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 2007 ; A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. I, Dover Publications, Mineola, New York, 1957; v. II, 1961 | MR | MR
[3] A. V. Arutyunov, Lektsii po Vypuklomu i Mnogoznachnomu Analizu, FIZMATLIT, M., 2014 (In Russian)
[4] A. I. Bulgakov, O. V. Filippova, “The functional differential inclusions with impulses and with the right-hand side not necessarily convex-valued with respect to switching”, Proceedings of the Institute of Mathematics and Computer Science Udmurt State University, 14 (2014), 3-48 (In Russian) | Zbl
[5] A. I. Bulgakov, E. V. Korchagina, O. V. Filippova, “Functional-differential inclusions with impulses. Part 1-6.”, Tambov University Reports. Series: Natural and Technical Sciences, 14:6 (2009), 1275-1313 (In Russian)
[6] A.I. Bulgakov, “K voprosu suschestvovaniya nepreryvnykh vetvei u mnogoznachnykh otobrazhenii s nevypuklymi obrazami v prostranstvakh summiruemykh funktsii”, Matematicheskii sbornik, 136:2 (1988), 292-300 ; A. I. Bulgakov, “On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions”, Math. USSR-Sb, 64:1 (1989), 295-303 | Zbl | DOI | MR | Zbl