On differential equations in Banach algebras
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 410-421
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider higher-order linear differential equations with constant coefficients in Banach algebras (this is a direct generalization of higher-order matrix differential equations). The presentation is based on higher algebra, differential equations and functional analysis. The results obtained can be used in the study of matrix equations, in the theory of small oscillations in physics, and in the theory of perturbations in quantum mechanics. The presentation is based on the original research of the authors.
Keywords: higher-order differential equations, Banach algebras, Sylvester's theorem, Hilbert identity, Cauchy function, non-resonant condition and frequency constants, bounded green function and integral constants, non-commutative Viet formula.
@article{VTAMU_2020_25_132_a5,
     author = {A. I. Perov and I. D. Kostrub},
     title = {On differential equations in {Banach} algebras},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {410--421},
     year = {2020},
     volume = {25},
     number = {132},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/}
}
TY  - JOUR
AU  - A. I. Perov
AU  - I. D. Kostrub
TI  - On differential equations in Banach algebras
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 410
EP  - 421
VL  - 25
IS  - 132
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/
LA  - ru
ID  - VTAMU_2020_25_132_a5
ER  - 
%0 Journal Article
%A A. I. Perov
%A I. D. Kostrub
%T On differential equations in Banach algebras
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 410-421
%V 25
%N 132
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/
%G ru
%F VTAMU_2020_25_132_a5
A. I. Perov; I. D. Kostrub. On differential equations in Banach algebras. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 410-421. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/

[1] W. Rudin, Functional Analysis, McGRAW-HILL book company, New York–San-Francisco–Toronto–London, 1973 | Zbl

[2] A. I. Perov, I. D. Kostrub, “On bounded solutions to weakly nonlinear vector-matrix differential equations of order $n$”, Siberian Math. J., 57:4 (2016), 650–665 | DOI | MR | Zbl

[3] Yu. L. Daletsky, M. G. Crane, Stability of Solutions of Differential Equations in Banach Space, Nauka publ., Moscow, 1970 (In Russian)

[4] V. G. Kurbatov, I. V. Kurbatova, “Computation of Green's Function of the Bounded Solutions Problem”, Comput. Methods Appl. Math., 2017 | MR

[5] E. Hille, R. Phillips, Functional Analysis and Semigroups, American Mathematical Society, USA, 1957 | MR | Zbl

[6] A. O. Gel'fond, Calculus of Finite Differences, Moscow, Fizmatlit, 1959 (In Russian) | MR

[7] M. A. Krasnoselsky, V. Sh. Burd, Yu. S. Kolesov, Nonlinear Almost Periodic Oscillations, Nauka Publ., Moscow, 1970 (In Russian)

[8] V. G. Kurbatov, I. V. Kurbatova, Computational Methods of Spectral Theory, Publishing House of VSU, Voronezh, 2019 (In Russian)

[9] S. Bochner, Lectures on Fourier Integrals, Princeton Uversity Press, Princeton, 1959 | MR | Zbl