On differential equations in Banach algebras
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 410-421
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider higher-order linear differential equations with constant coefficients in Banach algebras (this is a direct generalization of higher-order matrix differential equations). The presentation is based on higher algebra, differential equations and functional analysis. The results obtained can be used in the study of matrix equations, in the theory of small oscillations in physics, and in the theory of perturbations in quantum mechanics. The presentation is based on the original research of the authors.
Keywords:
higher-order differential equations, Banach algebras, Sylvester's theorem, Hilbert identity, Cauchy function, non-resonant condition and frequency constants, bounded green function and integral constants, non-commutative Viet formula.
@article{VTAMU_2020_25_132_a5,
author = {A. I. Perov and I. D. Kostrub},
title = {On differential equations in {Banach} algebras},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {410--421},
publisher = {mathdoc},
volume = {25},
number = {132},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/}
}
TY - JOUR AU - A. I. Perov AU - I. D. Kostrub TI - On differential equations in Banach algebras JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 410 EP - 421 VL - 25 IS - 132 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/ LA - ru ID - VTAMU_2020_25_132_a5 ER -
A. I. Perov; I. D. Kostrub. On differential equations in Banach algebras. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 410-421. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a5/