New method for the numerical solution of the Fredholm linear integral equation on a large interval
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 387-400
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The traditional numerical process to tackle a linear Fredholm integral equation on a large interval is divided into two parts, the first is discretization, and the second is the use of the iterative scheme to approach the solutions of the huge algebraic system. In this paper we propose a new method based on constructing a generalization of the iterative scheme, which is adapted to the system of linear bounded operators. Then we don't discretize the whole system, but only the diagonal part of the system. This system is built by transforming our integral equation. As discretization we consider the product integration method and the Gauss–Seidel iterative method as iterative scheme. We also prove the convergence of this new method. The numerical tests developed show its effectiveness.
Keywords: Fredholm equation of the second kind, weakly singular kernel, large integration interval, Gauss-Seidel method, bounded operators matrix, product integration method.
@article{VTAMU_2020_25_132_a3,
     author = {S. Lemita and H. Guebbai and I. Sedka and M. Z. Aissaoui},
     title = {New method for the numerical solution of the {Fredholm
} linear integral equation on a large interval},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {387--400},
     year = {2020},
     volume = {25},
     number = {132},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/}
}
TY  - JOUR
AU  - S. Lemita
AU  - H. Guebbai
AU  - I. Sedka
AU  - M. Z. Aissaoui
TI  - New method for the numerical solution of the Fredholm
 linear integral equation on a large interval
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 387
EP  - 400
VL  - 25
IS  - 132
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/
LA  - ru
ID  - VTAMU_2020_25_132_a3
ER  - 
%0 Journal Article
%A S. Lemita
%A H. Guebbai
%A I. Sedka
%A M. Z. Aissaoui
%T New method for the numerical solution of the Fredholm
 linear integral equation on a large interval
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 387-400
%V 25
%N 132
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/
%G ru
%F VTAMU_2020_25_132_a3
S. Lemita; H. Guebbai; I. Sedka; M. Z. Aissaoui. New method for the numerical solution of the Fredholm
 linear integral equation on a large interval. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 387-400. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/

[1] W. Li, W. Sun, “Modified Gauss–Seidel type methods and Jacobi type methods for $Z$-matrices”, Linear Algebra and Its Applications, 317:1 (2000), 227–240 | MR | Zbl

[2] M. S. Muthuvalu, “The preconditioned Gauss-Seidel iterative methods for solving Fredholm integral equations of the second kind”, AIP Conference Proceedings, 1751 (2016), 020001 | DOI | MR

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, 2-nd ed., Society for Industrial and Applied Mathematics, 2003, 567 pp. | MR | Zbl

[4] D. K. Salkuyeh, “Generalized Jacobi and Gauss–Seidel methods for solving linear system of equations”, Numer. Math. J. Chinese Univ., 16:2 (2007), 164–170 | MR

[5] Y. Zhang, T. Z. Huang, X. P. Liu, “Modified iterative methods for nonnegative matrices and M-matrices linear systems”, Computers Mathematics with Applications, 50:10 (2005), 1587–1602 | DOI | MR | Zbl

[6] L. Zou, Y. Jiang, “Convergence of The Gauss-Seidel Iterative Method”, Procedia Engineering, 15 (2011), 1647–1650 | DOI

[7] S. Lemita, H. Guebbai, “New process to approach linear Fredholm integral equations defined on large interval”, Asian Eur. J. Math., 12:01 (2019), 1950009 | DOI | MR | Zbl

[8] S. Lemita, H. Guebbai, M. Z. Aissaoui, “Generalized Jacobi method for linear bounded operators system”, Comput. Appl. Math., 37:3 (2018), 3967–3980 | DOI | MR | Zbl

[9] M. Ahues, A. Largillier, O. Titaud, “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numerical Functional Analysis and Optimization, 22 (2001), 789–814 | DOI | MR | Zbl

[10] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, United Kingdom, 1997 | MR | Zbl

[11] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Approach, Springer, New York, 2009 | MR

[12] M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, New York, 2001 | MR | Zbl