@article{VTAMU_2020_25_132_a3,
author = {S. Lemita and H. Guebbai and I. Sedka and M. Z. Aissaoui},
title = {New method for the numerical solution of the {Fredholm
} linear integral equation on a large interval},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {387--400},
year = {2020},
volume = {25},
number = {132},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/}
}
TY - JOUR AU - S. Lemita AU - H. Guebbai AU - I. Sedka AU - M. Z. Aissaoui TI - New method for the numerical solution of the Fredholm linear integral equation on a large interval JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 387 EP - 400 VL - 25 IS - 132 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/ LA - ru ID - VTAMU_2020_25_132_a3 ER -
%0 Journal Article %A S. Lemita %A H. Guebbai %A I. Sedka %A M. Z. Aissaoui %T New method for the numerical solution of the Fredholm linear integral equation on a large interval %J Vestnik rossijskih universitetov. Matematika %D 2020 %P 387-400 %V 25 %N 132 %U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/ %G ru %F VTAMU_2020_25_132_a3
S. Lemita; H. Guebbai; I. Sedka; M. Z. Aissaoui. New method for the numerical solution of the Fredholm linear integral equation on a large interval. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 387-400. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a3/
[1] W. Li, W. Sun, “Modified Gauss–Seidel type methods and Jacobi type methods for $Z$-matrices”, Linear Algebra and Its Applications, 317:1 (2000), 227–240 | MR | Zbl
[2] M. S. Muthuvalu, “The preconditioned Gauss-Seidel iterative methods for solving Fredholm integral equations of the second kind”, AIP Conference Proceedings, 1751 (2016), 020001 | DOI | MR
[3] Y. Saad, Iterative Methods for Sparse Linear Systems, 2-nd ed., Society for Industrial and Applied Mathematics, 2003, 567 pp. | MR | Zbl
[4] D. K. Salkuyeh, “Generalized Jacobi and Gauss–Seidel methods for solving linear system of equations”, Numer. Math. J. Chinese Univ., 16:2 (2007), 164–170 | MR
[5] Y. Zhang, T. Z. Huang, X. P. Liu, “Modified iterative methods for nonnegative matrices and M-matrices linear systems”, Computers Mathematics with Applications, 50:10 (2005), 1587–1602 | DOI | MR | Zbl
[6] L. Zou, Y. Jiang, “Convergence of The Gauss-Seidel Iterative Method”, Procedia Engineering, 15 (2011), 1647–1650 | DOI
[7] S. Lemita, H. Guebbai, “New process to approach linear Fredholm integral equations defined on large interval”, Asian Eur. J. Math., 12:01 (2019), 1950009 | DOI | MR | Zbl
[8] S. Lemita, H. Guebbai, M. Z. Aissaoui, “Generalized Jacobi method for linear bounded operators system”, Comput. Appl. Math., 37:3 (2018), 3967–3980 | DOI | MR | Zbl
[9] M. Ahues, A. Largillier, O. Titaud, “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numerical Functional Analysis and Optimization, 22 (2001), 789–814 | DOI | MR | Zbl
[10] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, United Kingdom, 1997 | MR | Zbl
[11] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Approach, Springer, New York, 2009 | MR
[12] M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, New York, 2001 | MR | Zbl