Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 370-386
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A planar velocity control problem with a disc indicatrix and a target set with a smooth boundary having finite discontinuities of second-order derivatives of coordinate functions is considered. We have studied pseudo-vertices-special points of the goal boundary that generate a singularity for the optimal control function. For non-stationary pseudo-vertices with discontinuous curvature, one-way markers are found, the values of which are necessary for analytical and numerical construction of branches of a singular set. It is proved that the markers lie on the border of the spectrum-the region of possible values. One of them is equal to zero, the other takes an invalid value $-\infty.$ In their calculation, asymptotic expansions of a nonlinear equation expressing the transversality condition are applied. Exact formulas for the extreme points of branches of a singular set are also obtained based on markers. An example of a control problem is presented, in which the constructive elements are obtained using the developed methods (pseudo-vertex, its markers, and the extreme point of a singular set), are sufficient to construct a singular set and an optimal result function in an explicit analytical form over the entire area of consideration.
Keywords: velocity, optimal result function, singular set, transversality, Hamilton-Jacobi equation, bisector, minimax solution, diffeomorphism.
@article{VTAMU_2020_25_132_a2,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {370--386},
     year = {2020},
     volume = {25},
     number = {132},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a2/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 370
EP  - 386
VL  - 25
IS  - 132
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a2/
LA  - ru
ID  - VTAMU_2020_25_132_a2
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 370-386
%V 25
%N 132
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a2/
%G ru
%F VTAMU_2020_25_132_a2
P. D. Lebedev; A. A. Uspenskii. Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 370-386. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a2/

[1] L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya Teoriya Optimal'nyh Protsessov, Fizmatgiz, Moscow, 1961 (In Russian) | MR

[2] G. Leitmann, An Introduction to Optimal Control, McGraw-Hill, New York, 1966 | Zbl

[3] A. Braison, Yu-shi. Kho, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972; A. E. Bryson, Yu-Chi. Ho, Applied Optimal Control Optimization, Estimation and Control, Blaisdell Publishing Company, Ocland, 1969 | MR

[4] V. G. Boltyansky, Matematicheskie Metody Optimal'nogo Upravleniya, Nauka Publ., Moscow, 1969 (In Russian)

[5] R. Bellman, Dynamic Programming, Princeton univ. press, New Jersey, 1957 | MR | Zbl

[6] N. N. Krasovskii, A. I. Subbotin, Pozicionnye Differencialnye Igry, Nauka Publ., Moscow, 1974 (In Russian) | MR

[7] A. I. Subbotin, Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh tekhnologii, Moskva-Izhevsk, 2003 ; A. I. Subbotin, Generalized Solutions of First Order PDEs: the Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR | MR

[8] M. G. Crandall, P. L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”, em Trans. Amer. Math.Soc, 277:1 (1983), 1–42 | DOI | MR | Zbl

[9] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics, 263:S2 (2008), 191–201 ; | MR | Zbl

[10] Dzh. Brus, P. Dzhiblin, Krivye i osobennosti, Mir, M., 1988 ; J. W. Bruce, P. J. Giblin,, Curves and singularities, Cambridge University Press, Cambridge, 1984 | MR | MR | Zbl

[11] V. N. Ushakov, A. A. Uspenskii, “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:1 (2016), 95–120 (In Russian) | MR | Zbl

[12] P. D. Lebedev, A. A. Uspenskii, “Construction of a solution of a velocity problem in case of violation of the smoothness of the curvature of the target set boarder”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 98–114 (In Russian) | Zbl

[13] P. D. Lebedev, A. A. Uspenskii, “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 108–119 (In Russian) | MR

[14] Th. Bröcker, L. Lander, Differentiable Germs and Catastrophes, Cambrifge University Press, Cambridge, 1975 | MR | Zbl

[15] V. M. Zakalyukin, “Envelopes of wave front families, and control theory”, Trudy Mat. Inst. Steklov, 209 (1995), 132–142 (In Russian) | Zbl

[16] V. F. Dem'yanov, A. M. Rubinov,, Foundations of Nonsmooth Analysys and Quasi-Differential Calculus, Nauka Publ., Moscow, 1990 (In Russian)

[17] S. I. Dudov, “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. Sbornik, 186:3 (1995), 29–52 | MR | Zbl

[18] A. A. Uspenskii, P. D. Lebedev, “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set”, Automation and Remote Control, 70:7 (2009), 1132–1139 | MR | Zbl

[19] A. A. Uspenskii, “Necessary conditions for the existance of pseudovertices of the boundary set in the Dirichet problem for the eikonal equation”, Tr. Inst. Mat. Mekh, 21:1 (2015), 250–263 (In Russian) | MR

[20] A. A. Uspenskii, P. D. Lebedev, “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:1 (2018), 59–73 (In Russian) | MR | Zbl

[21] A. A. Uspenskii, P. D. Lebedev, “On the set of limit values of local diffeomorhisms in wavefront evolution”, Proceedings of the Steklov Institute of Mathematics, 272:S1 (2011), 255–270 | MR | Zbl

[22] A. A. Uspenskii, “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proceedings of the Steklov Institute of Mathematics, 291:S1 (2015), 239–254 ; | MR | Zbl

[23] N. V. Efimov, S. B. Stečkin, “Some properties if Čebyšev sets”, Dokl. Akad. Nauk SSSR (N.S.), 118 (1958), 17–19 (In Russian) | Zbl

[24] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (2016), 3–84 | MR | Zbl