Minimax differential game with delay
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 359-369
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a minimax positional differential game with aftereffect based on the $i$-smooth analysis methodology. In the finite-dimensional (ODE) case for a minimax differential game, resolving mixed strategies can be constructed using the dynamic programming method. The report shows that the $i$-smooth analysis methodology allows one to construct counterstrategies in a completely similar way to the finite-dimensional case. Moreover as it is typical for the use of $i$-smooth analysis, in the absence of an aftereffect, all the results of the article pass to the corresponding results of the finite-dimensional theory of positional differential games.
Keywords: differential games, systems with delays.
@article{VTAMU_2020_25_132_a1,
     author = {A. V. Kim and G. A. Bocharov},
     title = {Minimax differential game with delay},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {359--369},
     year = {2020},
     volume = {25},
     number = {132},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a1/}
}
TY  - JOUR
AU  - A. V. Kim
AU  - G. A. Bocharov
TI  - Minimax differential game with delay
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 359
EP  - 369
VL  - 25
IS  - 132
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a1/
LA  - ru
ID  - VTAMU_2020_25_132_a1
ER  - 
%0 Journal Article
%A A. V. Kim
%A G. A. Bocharov
%T Minimax differential game with delay
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 359-369
%V 25
%N 132
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a1/
%G ru
%F VTAMU_2020_25_132_a1
A. V. Kim; G. A. Bocharov. Minimax differential game with delay. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 359-369. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a1/

[1] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974 ; N. N. Krasovskii, A. I. Subbotin, Game-theoretical Control Problems, Springer-Verlag, New York, Berlin, 1976 | MR | MR

[2] Yu. S. Osipov, “Differentsialnye igry sistem s posledeistviem”, Doklady Akademii nauk, 198:4 (1971), 475–478

[3] A. V. Kryazhimskii, Yu. S. Osipov, “Differential-difference Game of Approaching with a Functional Target Set Ordered Spaces”, PMM, 37:1 (1973), 3–13 | MR | Zbl

[4] A. V. Kryazhimskii, “Differential-difference Game of Evation from a Functional Target Set”, Izv ANSSSR. Technical cybernetics, 1973, no. 4, 71–79

[5] N. A. Andryushechkina, A. V. Ivanov, A. V. Kim, “Application of $i$-Smooth Analysis to Differential Games with Delays”, Control Applications of Optimization, Proceedings of the 17th IFAC Workshop (Yekaterinburg, Russia, October 15–19, 2018), Krasovskii Inst. of Mathematics and Mechanics, UB of RAS, Yekaterinburg, 2018, 19e

[6] A. V. Kim, $i$-Smooth Analysis. Theory and Applications, Wiley, New Jersey, 2015 | MR | Zbl

[7] A. V. Kim, A. V. Ivanov, Systems with Delays. Analysis, Control, Computations, Wiley, New Jersey, 2015 | MR | Zbl