Minimax differential game with delay
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 359-369
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers a minimax positional differential game with aftereffect based on the $i$-smooth analysis methodology. In the finite-dimensional (ODE) case for a minimax differential game, resolving mixed strategies can be constructed using the dynamic programming method. The report shows that the $i$-smooth analysis methodology allows one to construct counterstrategies in a completely similar way to the finite-dimensional case. Moreover as it is typical for the use of $i$-smooth analysis, in the absence of an aftereffect, all the results of the article pass to the corresponding results of the finite-dimensional theory of positional differential games.
Keywords:
differential games, systems with delays.
@article{VTAMU_2020_25_132_a1,
author = {A. V. Kim and G. A. Bocharov},
title = {Minimax differential game with delay},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {359--369},
publisher = {mathdoc},
volume = {25},
number = {132},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a1/}
}
A. V. Kim; G. A. Bocharov. Minimax differential game with delay. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 359-369. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a1/