Some questions of the analysis of mappings of metricand partially ordered spaces
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 345-358
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The questions of existence of solutions of equations and attainability of minimum values of functions are considered. All the obtained statements are united by the idea of existence for any approximation to the desired solution or to the minimum point of the improved approximation. The relationship between the considered problems in metric and partially ordered spaces is established. It is also shown how some well-known results on fixed points and coincidence points of mappings of metric and partially ordered spaces are derived from the obtained statements. Further, on the basis of analogies in the proofs of all the obtained statements, we propose a method for obtaining similar results from the theorem being proved on the satisfiability of a predicate of the following form. Let $(X, \preceq)$ be a partially ordered space, the mapping $\Phi: X \times X \to \{0,1\}$ satisfies the following condition: for any $x \in X $ there exists $x'\in X$ such that $x' \preceq x$ and $\Phi(x', x) = 1.$ The predicate $F(x)=\Phi(x, x)$ is considered, sufficient conditions for its satisfiability, that is, the existence of a solution to the equation $F(x)=1.$ This result was announced in [Zhukovskaya T.V., Zhukovsky E.S. Satisfaction of predicates given on partially ordered spaces // Kolmogorov Readings. General Control Problems and their Applications (GCP–2020). Tambov, 2020, 34-36].
Keywords: fixed point, coincidence point, minimum of function, partially ordered space, satisfiable predicate.
@article{VTAMU_2020_25_132_a0,
     author = {T. V. Zhukovskaya and E. S. Zhukovskiy and I. D. Serova},
     title = {Some questions of the analysis of mappings of metricand partially ordered spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {345--358},
     year = {2020},
     volume = {25},
     number = {132},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a0/}
}
TY  - JOUR
AU  - T. V. Zhukovskaya
AU  - E. S. Zhukovskiy
AU  - I. D. Serova
TI  - Some questions of the analysis of mappings of metricand partially ordered spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 345
EP  - 358
VL  - 25
IS  - 132
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a0/
LA  - ru
ID  - VTAMU_2020_25_132_a0
ER  - 
%0 Journal Article
%A T. V. Zhukovskaya
%A E. S. Zhukovskiy
%A I. D. Serova
%T Some questions of the analysis of mappings of metricand partially ordered spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 345-358
%V 25
%N 132
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a0/
%G ru
%F VTAMU_2020_25_132_a0
T. V. Zhukovskaya; E. S. Zhukovskiy; I. D. Serova. Some questions of the analysis of mappings of metricand partially ordered spaces. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 132, pp. 345-358. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_132_a0/

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math, 1922, no. 3, 133–181 | DOI | MR | Zbl

[2] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady Akademii nauk, 416:2 (2007), 151–155 | Zbl

[3] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “Tochki sovpadeniya i obobschennye tochki sovpadeniya dvukh mnogoznachnykh otobrazhenii”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 308, MIAN, M., 2020, 42–49

[4] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovichs theorem”, Topology and its Applications, 275 (2020), Article ID 107030 | MR

[5] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45 (2009), 613–634 | Zbl

[6] T. V. Zhukovskaia, W. Merchela, A. I. Shindiapin, “On the coincidence points of the mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian)

[7] W. Merchela, “About Arutyunov theorem of coincidence point for two mapping in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018), 65–73 (In Russian)

[8] A. V. Arutyunov, “Uslovie Karisti i suschestvovanie minimuma ogranichennoi snizu funktsii v metricheskom prostranstve. Prilozheniya k teorii tochek sovpadeniya”, Optimalnoe upravlenie, Sbornik statei. K 105-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 291, MAIK «Nauka/Interperiodika», M., 2015, 30–44

[9] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | MR | Zbl

[10] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Applications, 201 (2016), 330–343 | MR | Zbl

[11] S. Benarab, Z. T. Zhukovskaia, E. S. Zhukovskiy, S. E. Zhukovskiy, “O funktsional'nyh i differentsial'nyh neravenstvah i ih prilozhenijah k zadacham upravlenija”, Differential Equations, 56:11 (2020), 1471–1482 (In Russian) | MR

[12] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Applications, 180:1 (2019), 48–61 | MR | Zbl

[13] A. Brondsted, “On a lemma of Bishop and Phelps”, Pasif. J. Math, 55 (1974), 335–341 | DOI | MR | Zbl

[14] T. V. Zhukovskaia, E. S. Zhukovskiy, “Satisfaction of predicates given on partially ordered spaces”, Kolmogorov Readings. General Control Problems and their Applications (GCP–2020), Proceedings of the IX International Scientific Conference, dedicated to the 70th anniversary of the birth of Alexander Ivanovich Bulgakov and the 90th anniversary of the Institute of mathematics, physics and information technologies of Tambov state University named after G. R. Derzhavin (Tambov, October 12-16, 2020), Abstracts, Derzhavinsky Publishing House, Tambov, 2020, 34–36 (In Russian)