Mots-clés : Lax equations
@article{VTAMU_2020_25_131_a7,
author = {G. F. Helminck and E. A. Panasenko},
title = {Scaling invariance of the strict {KP} hierarchy},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {331--340},
year = {2020},
volume = {25},
number = {131},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a7/}
}
G. F. Helminck; E. A. Panasenko. Scaling invariance of the strict KP hierarchy. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 331-340. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a7/
[1] B. B. Khadomtsev, V. I. Petviashvilii, “On the stability of solitary waves in weakly dispersing media”, Sov. Phys. Doklady, 15 (1970), 539–541
[2] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Integrable deformations in the algebra of pseudo differential operators from a Lie algebraic perspective”, Theoret. and Math. Phys., 174:1 (2013), 134–153 | DOI | MR | Zbl
[3] G. Wilson, “Commuting flows and conservation laws for Lax equations”, Math. Proc. Camb. Phil. Soc., 86:1 (1979), 131–143 | DOI | MR
[4] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Cauchy problems related to integrable deformations of pseudo differential operators”, Journal of Geometry and Physics, 85 (2014), 196–205 | DOI | MR | Zbl
[5] G. F. Helminck, E. A. Panasenko, “Geometric solutions of the strict KP hierarchy”, Theoret. and Math. Phys., 198:3 (2019), 48–68 | DOI | MR | Zbl