On a representation of the solvability set in the retention problem
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 290-298
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper provides another iterative method for constructing a resolving set in the game problem of retaining the movements of an abstract dynamic system in given phase constraints. In the iterative procedure, instead of the program absorption operator, it is proposed to use a family of absorption operators for individual program disturbances. Such an approach is based on theorems on the existence and representation of common fix-points of a family of mappings.
Keywords: method of programmed iterations, game problem of retention, common fixpoints.
@article{VTAMU_2020_25_131_a4,
     author = {D. A. Serkov},
     title = {On a representation of the solvability set in the retention problem},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {290--298},
     year = {2020},
     volume = {25},
     number = {131},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - On a representation of the solvability set in the retention problem
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 290
EP  - 298
VL  - 25
IS  - 131
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/
LA  - ru
ID  - VTAMU_2020_25_131_a4
ER  - 
%0 Journal Article
%A D. A. Serkov
%T On a representation of the solvability set in the retention problem
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 290-298
%V 25
%N 131
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/
%G ru
%F VTAMU_2020_25_131_a4
D. A. Serkov. On a representation of the solvability set in the retention problem. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 290-298. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/

[1] R. Isaacs, Differential Games, Mir Publ., Moscow, 1967 (In Russian)

[2] N. N. Krasovsky, A. I. Subbotin, Positional Differential Games, Nauka Publ., Moscow, 1974 (In Russian) | MR

[3] A. G. Chentsov, “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Matem. sb., 99(141):3 (1976), 394–420

[4] S. V. Chistyakov, “On solving game problems of pursuit”, Applied Mathematics and Mechanics, 41:5 (1977), 825–832 (In Russian) | MR

[5] V. I. Ukhobotov, “Construction of a stable bridge for one class of linear games”, Applied Mathematics and Mechanics, 41:2 (1977), 358–364 (In Rusian) | MR

[6] D. A. Serkov, “On the construction of a predicate truth set”, Izv. IMI UdGU, 50 (2017), 45–61 (In Russian) | Zbl

[7] A. G. Chentsov, “Metod programmnykh iteratsii dlya resheniya abstraktnoi zadachi uderzhaniya”, Avtomat. i telemekh., 2004, no. 2, 157–169

[8] K. Kuratovsky, A. Mostovsky, Theory of Sets, Mir Publ., Moscow, 1970 (In Russian)

[9] D. A. Serkov, A. G. Chentsov, “Implementation of the programmed iterations method in packages of spaces”, Izv. IMI UdGU, 2016, no. 2(48), 42–67 (In Russian) | Zbl

[10] D. A. Serkov, “Transfinitnye posledovatelnosti v metode programmnykh iteratsii”, Tr. IMM UrO RAN, 23, no. 1, 2017, 228–240; D. A. Serkov, “Transfinite sequences in the method of programmed iterations”, Proc. Steklov Inst. Math. (Suppl.), 300no. , suppl. 1 (2018), 153–164 | MR