On a representation of the solvability set in the retention problem
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 290-298
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper provides another iterative method for constructing a resolving set in the game problem of retaining the movements of an abstract dynamic system in given phase constraints. In the iterative procedure, instead of the program absorption operator, it is proposed to use a family of absorption operators for individual program disturbances. Such an approach is based on theorems on the existence and representation of common fix-points of a family of mappings.
Keywords:
method of programmed iterations, game problem of retention, common fixpoints.
@article{VTAMU_2020_25_131_a4,
author = {D. A. Serkov},
title = {On a representation of the solvability set in the retention problem},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {290--298},
publisher = {mathdoc},
volume = {25},
number = {131},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/}
}
TY - JOUR AU - D. A. Serkov TI - On a representation of the solvability set in the retention problem JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 290 EP - 298 VL - 25 IS - 131 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/ LA - ru ID - VTAMU_2020_25_131_a4 ER -
D. A. Serkov. On a representation of the solvability set in the retention problem. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 290-298. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a4/