On adjoint operators for fractional differentiation operators
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 284-289
Voir la notice de l'article provenant de la source Math-Net.Ru
On a linear manifold of the space of square summable functions on a finite segment vanishing at its ends, we consider the operator of left-sided Caputo fractional differentiation. We prove that the adjoint for it is the operator of right-sided Caputo fractional differentiation. Similar results are established for the Riemann–Liouville fractional differentiation operators. We also demonstrate that the operator, which is represented as the sum of the left-sided and the right-sided fractional differentiation operators is self adjoint. The known properties of the Caputo and Riemann–Liouville fractional derivatives are used to substantiate the results.
Keywords:
Caputo fractional derivative, Riemann-Liouville fractional derivative, adjoint operator, square summable function.
@article{VTAMU_2020_25_131_a3,
author = {G. Petrosyan},
title = {On adjoint operators for fractional differentiation operators},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {284--289},
publisher = {mathdoc},
volume = {25},
number = {131},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a3/}
}
TY - JOUR AU - G. Petrosyan TI - On adjoint operators for fractional differentiation operators JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 284 EP - 289 VL - 25 IS - 131 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a3/ LA - ru ID - VTAMU_2020_25_131_a3 ER -
G. Petrosyan. On adjoint operators for fractional differentiation operators. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 284-289. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a3/