@article{VTAMU_2020_25_131_a1,
author = {F. A. Kuterin},
title = {On the regularization of classical optimality conditions in a convex optimal control problem with state constraints},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {263--273},
year = {2020},
volume = {25},
number = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/}
}
TY - JOUR AU - F. A. Kuterin TI - On the regularization of classical optimality conditions in a convex optimal control problem with state constraints JO - Vestnik rossijskih universitetov. Matematika PY - 2020 SP - 263 EP - 273 VL - 25 IS - 131 UR - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/ LA - ru ID - VTAMU_2020_25_131_a1 ER -
%0 Journal Article %A F. A. Kuterin %T On the regularization of classical optimality conditions in a convex optimal control problem with state constraints %J Vestnik rossijskih universitetov. Matematika %D 2020 %P 263-273 %V 25 %N 131 %U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/ %G ru %F VTAMU_2020_25_131_a1
F. A. Kuterin. On the regularization of classical optimality conditions in a convex optimal control problem with state constraints. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 263-273. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/
[1] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.; J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, 1972 | MR | Zbl
[2] A. V. Arutyunov, Extremum Conditions. Abnormal and Degenerate Problems, Factorial Publ., Moscow, 1997 (In Russian) | MR
[3] A. A. Milyutin, A. V. Dmitruk, N. P. Osmolovskii, Maximum Principle in Optimal Control, Izd. MGU, Moscow, 2004 (In Russian)
[4] M. I. Sumin, “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 25–49 | Zbl
[5] M. I. Sumin, “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 757–775 (In Russian)
[6] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 279–296 (In Russian) | MR
[7] M. I. Sumin, “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2083–2102 | MR
[8] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | Zbl
[9] M. I. Sumin, “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625
[10] M. I. Sumin, “Stable sequential Pontryagin maximum principle in optimal control problem with state constraints”, Proceedings of XIIth All-Russia Conference on Control Problems, XIIth All-Russia Conference on Control Problems (Juny, 16-19, 2014), Proceedings, Institute of Control Sciences of RAS, Moscow, 2014, 796–808 (In Russian)
[11] F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 474–489 | Zbl
[12] F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 26–41 | MR | Zbl
[13] F. A. Kuterin, M. I. Sumin, “Ustoichivyi iteratsionnyi printsip Lagranzha v vypuklom programmirovanii kak instrument dlya resheniya neustoichivykh zadach”, Zh. vychisl. matem. i matem. fiz., 57:1 (2017), 55–68 | MR | Zbl
[14] F. A. Kuterin, “On stable Lagrange principle in iterative form in convex programming and its application for solving unstable operator equations of the first kind”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1239–1246 (In Russian)
[15] F. A. Kuterin, M. I. Sumin, “O regulyarizovannom printsipe Lagranzha v iteratsionnoi forme i ego primenenii dlya resheniya neustoichivykh zadach”, Matem. modelirovanie, 28:11 (2016), 3–18 ; F. A. Kuterin, M. I. Sumin, “On the regularized Lagrange principle in the iterative form and its application for solving unstable problems”, Math. Models Comput. Simul., 9:3 (2017), 328–338 | Zbl | MR
[16] F. P. Vasil’ev, Metody Optimizatsii: V 2-kh. kn., MCCME, Moscow, 2011 (In Russian)
[17] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 ; V. M. Alekseev, V. M. Tikhomirovv, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987 | MR | MR