On the regularization of classical optimality conditions in a convex optimal control problem with state constraints
Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 263-273
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the regularization of classical optimality conditions in a convex optimal control problem for a linear system of ordinary differential equations with pointwise state constraints such as equality and inequality, understood as constraints in the Hilbert space of square-integrable functions. The set of admissible task controls is traditionally embedded in the space of square-integrable functions. However, the target functional of the optimization problem is not, generally speaking, strongly convex. Obtaining regularized classical optimality conditions is based on a technique involving the use of two regularization parameters. One of them is used for the regularization of the dual problem, while the other is contained in a strongly convex regularizing addition to the target functional of the original problem. The main purpose of the obtained regularized Lagrange principle and the Pontryagin maximum principle is the stable generation of minimizing approximate solutions in the sense of J. Varga for the purpose of practical solving the considered optimal control problem with pointwise state constraints.
Keywords: optimal control, state constraints, ill-posed problem, dual regularization.
@article{VTAMU_2020_25_131_a1,
     author = {F. A. Kuterin},
     title = {On the regularization of classical optimality conditions in a convex optimal control problem with state constraints},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {263--273},
     year = {2020},
     volume = {25},
     number = {131},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/}
}
TY  - JOUR
AU  - F. A. Kuterin
TI  - On the regularization of classical optimality conditions in a convex optimal control problem with state constraints
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2020
SP  - 263
EP  - 273
VL  - 25
IS  - 131
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/
LA  - ru
ID  - VTAMU_2020_25_131_a1
ER  - 
%0 Journal Article
%A F. A. Kuterin
%T On the regularization of classical optimality conditions in a convex optimal control problem with state constraints
%J Vestnik rossijskih universitetov. Matematika
%D 2020
%P 263-273
%V 25
%N 131
%U http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/
%G ru
%F VTAMU_2020_25_131_a1
F. A. Kuterin. On the regularization of classical optimality conditions in a convex optimal control problem with state constraints. Vestnik rossijskih universitetov. Matematika, Tome 25 (2020) no. 131, pp. 263-273. http://geodesic.mathdoc.fr/item/VTAMU_2020_25_131_a1/

[1] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.; J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, 1972 | MR | Zbl

[2] A. V. Arutyunov, Extremum Conditions. Abnormal and Degenerate Problems, Factorial Publ., Moscow, 1997 (In Russian) | MR

[3] A. A. Milyutin, A. V. Dmitruk, N. P. Osmolovskii, Maximum Principle in Optimal Control, Izd. MGU, Moscow, 2004 (In Russian)

[4] M. I. Sumin, “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 25–49 | Zbl

[5] M. I. Sumin, “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 757–775 (In Russian)

[6] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 279–296 (In Russian) | MR

[7] M. I. Sumin, “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2083–2102 | MR

[8] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | Zbl

[9] M. I. Sumin, “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625

[10] M. I. Sumin, “Stable sequential Pontryagin maximum principle in optimal control problem with state constraints”, Proceedings of XIIth All-Russia Conference on Control Problems, XIIth All-Russia Conference on Control Problems (Juny, 16-19, 2014), Proceedings, Institute of Control Sciences of RAS, Moscow, 2014, 796–808 (In Russian)

[11] F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016), 474–489 | Zbl

[12] F. A. Kuterin, M. I. Sumin, “The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 26–41 | MR | Zbl

[13] F. A. Kuterin, M. I. Sumin, “Ustoichivyi iteratsionnyi printsip Lagranzha v vypuklom programmirovanii kak instrument dlya resheniya neustoichivykh zadach”, Zh. vychisl. matem. i matem. fiz., 57:1 (2017), 55–68 | MR | Zbl

[14] F. A. Kuterin, “On stable Lagrange principle in iterative form in convex programming and its application for solving unstable operator equations of the first kind”, Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1239–1246 (In Russian)

[15] F. A. Kuterin, M. I. Sumin, “O regulyarizovannom printsipe Lagranzha v iteratsionnoi forme i ego primenenii dlya resheniya neustoichivykh zadach”, Matem. modelirovanie, 28:11 (2016), 3–18 ; F. A. Kuterin, M. I. Sumin, “On the regularized Lagrange principle in the iterative form and its application for solving unstable problems”, Math. Models Comput. Simul., 9:3 (2017), 328–338 | Zbl | MR

[16] F. P. Vasil’ev, Metody Optimizatsii: V 2-kh. kn., MCCME, Moscow, 2011 (In Russian)

[17] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 ; V. M. Alekseev, V. M. Tikhomirovv, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987 | MR | MR